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A B S T R A C T   

Piezoresistive porous elastomers (PPEs) are gaining attention in the field of flexible electronics 
due to their unique properties including ultra softness, ultra lightness, and high sensitivity. These 
properties can be precisely adjusted through advanced material synthesis and micro/nano-
fabrication technologies that control the size, shape, and composition of the functional nano-
particles. Despite various theoretical models of porous materials developed to advance the design 
of these materials, issues such as reverse piezoresistive response and resistance overshooting 
remains to be unsolved. Using principles of elastic mechanics and electrical tunnel effects, the 
present study introduces an analytical model that considers the effects of multimodal buckling of 
the pore wall, pore closure, microcracks, and mismatch within the pore wall under large defor-
mation. The proposed model achieves a 99.5 % accuracy rate in describing the piezoresistive 
response (stress and resistance) under 75 % compression deformation by incorporating electrical 
tunnel theory into the mechanical model. The study also uncovers the mechanism behind high 
resistance overshooting and its relevant influences, including factors such as loading speed and 
application temperature. These findings are expected to drive the development of better porous 
composites and pave the way for practical applications of PPEs in various fields of smart sensors.   

1. Introduction 

Piezoresistive porous elastomers (PPEs) are a promising class of materials that offer unique combinations of properties, such as 
high sensitivity, ultrasoft, light, and low cost for pressure sensing applications, as well as the ability to respond to both mechanical and 
magnetic stimuli (Zhang et al., 2022; Li et al., 2021; Zhao et al., 2021). PPEs are typically composed of a porous elastomer such as 
thermoplastic polyether urethanes (TPU) (Gu et al., 2023), polydimethylsiloxane (PDMS) (Prabagar et al., 2023), fluoroelastomer 
(FKM) (Ma et al., 2022), and melamine formaldehyde resin (MF) (Wang et al., 2023), combined with small nanoparticles such as 
carbon black (CB) or silver (Nan et al., 2023). The nanoparticle dispersion can be either within the elastomer or distributed on the 
surface of the pore walls (Fu et al., 2023; Lv et al., 2023). Current research efforts focus on unlocking new ways to optimize the 
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Nomenclature 

λ Compression ratio 
R Resistance 
R0 Initial resistance 
μ Poisson ratio 
ρ Electrical resistivity 
χ Relative density of PPE 
α Tilt angle of beams in OC model 
η Slenderness ratio of the beam 
t Side length of the cross-section 
L Length of the beam 
Fx and Fy Forces along the x-direction and y-direction 
Fr Resultant force 
(x,y, z) Cartesian coordinates 
M Bending moment in the z-direction 
ML Bending moment at the free end 
(
xm, − ym

)
Coordinates of the free end 

φ Angle of the resultant force along the x-direction 
s Local coordinate of the beam 
θ Angle of the cross-section along s 
I Moment of inertia of the cross-section 
E Young’s modulus 
θ∗ Absolute value of the cross-section angle of the inflection point 
C Constant to be determined 
n Number of inflection points of the flexure 
U Potential 
J Electrical current density 
Ac Equivalent area 
X Undetermined parameter depending on the doping of conductive particles 
ρ0 Electrical resistivity of conductive fillers 
b Mass of the charge carriers 
V(T) Temperature-modified barrier height 
d Distance between conductive particles 
d0 Initial distance between conductive particles 
ϕ Volume fraction of conductive fillers 
ζ Proportionality coefficient 
β Index of correlation 
ε Strain 
fb Boltzmann function with a sigmoidal curve 
λ0 Transition center of Boltzmann function 
w Transition constant 
σ Equivalent stress 
R Equivalent resistance 
fc Exponential decay function 
τ Free parameters contingent upon the rate of pore closure 
A Relative resistivity of a solid containing fully closed pores 
G Shear modulus 
a Unconstrained parameter 
c1and c2 Free parameters of compressed stress 
δt Transverse deformation 
Lʹ Deformed length of a beam 
Fv Vertical force 
ν Parameter representing the changing trend of cracks 
f̃b Boltzmann function during creep 
f̃c Exponential decay function during creep 
w̃ and w̃c Transition constant of Boltzmann function during creep 
τ̃ Free parameters contingent upon the rate of pore closure during creep 
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composition and structure of these materials to achieve even higher performance and expand the range of potential applications (Lv 
et al., 2023; Shi et al., 2022). 

The presence of porous structures in materials offers several desirable properties, such as low weight, ultra softness, high 
compressibility, and high piezoresistive sensitivity (Shi et al., 2022; Li et al., 2021; Meena & Sankar, 2021). Materials with these 
properties are particularly suitable for applications in electronic skin (E-skin), where they can conform to human skin more effectively 
(Zarei et al., 2023). They are also useful in biomedical engineering, where they can be used to create biomimetic tissues and organs, 
bone implants, and medical scaffolds (Lv et al., 2021). However, due to the presence of porous structures, their mechanical and 
electrical properties exhibit complex characteristics, such as non-linear stress-strain responses and intricate piezoresistive properties. 
Here, we present two typical examples of PPE, such as the compressed porous piezoresistive nanocomposites (PPNs) shown in Fig. 1a 
and the compressed piezoresistive foams (PFs) shown in Fig. 1b. PPN primarily relies on conductive nanoparticles evenly distributed in 
the porous elastic matrix to achieve conductivity, whereas PF mainly depends on conductive materials, such as nickel or other metals 
plated by evaporation or electroplating, or composite conductive materials chemically impregnated, evenly distributed on the surface 
of the porous skeleton (Zhang et al., 2021; Huang et al., 2022). Figs. 1c and 1d present the piezoresistive behavior of these materials, 
including the stress-compressibility (stress vs. λ, λ is the ratio of the initial thickness of a substance to its thickness after compression) 
curves and resistance change ratio-compressibility (R/R0 vs. λ) curves. The stress-compressibility curve of PF, similar to traditional 
high-porosity porous materials, exhibits three stages: linear, yield, and exponential (Ashby & Medalist, 1983). In contrast, the 
stress-compressibility curve of PPN shows only an exponential stage. This difference primarily stems from variations in cellular 
structures and spatial architectures (Schlumberger & Thommes, 2021). Porous materials possess a distinct skeleton structure, akin to 
that of PF, along with a uniform spatial distribution. Under a specified pressure, this structure induces buckling of the pore walls, 
leading to a pronounced yield plateau in the material’s behavior (Ashby & Medalist, 1983; Chen & Jin, 2021). Conversely, materials 
with a graded porosity distribution or stochastic spatial distribution of pores, analogous to PPN, exhibit a lack of a distinct yield plateau 
due to the random distribution of buckling stresses within the pore wall structure across a range of values (Rahman et al., 2022). To 
describe the mechanical properties of porous materials, especially elastic porous materials, numerous models have been proposed to 
capture the diverse compression behaviors observed in different porous structures (Luo et al., 2021). The most well-known model 
among these is the Gibson and Ashby (GA) model, which simplifies the porous structure into a regular lattice structure and describes 
the pore walls using a bending beam model (Ashby & Medalist, 1983). The stress-strain compression behavior (elastic, plateau, and 
densification) of the porous material is captured through the bending and buckling of these beams and the closure of the pore (Ashby & 
Medalist, 1983). Other similar models include the equal cubic model (Jo & Naguib, 2007), the tetradecahedron model (Kelvin model) 
(Chen et al., 2017), and the octahedron model (Liu, 2010), collectively recognized as microstructure mechanical models. Concurrently, 
researchers have proposed phenomenological constitutive models, establishing mathematical correlations between stress and strain 
derived from empirical data fitting (Goga, 2011). For instance, Rush et al. introduced a phenomenological model based on stress-strain 
compression phenomena, exhibiting strong fitting capabilities and certain advantages in the identification process compared to the GA 
model (Rusch, 1970). However, this model lacked precision in describing the densification region. Subsequently, Liu and Subhash 
proposed a six-parameter constitutive model specifically tailored for polyurethane foam, accommodating linear elasticity, yield 
plateau, and densification characteristics (Liu & Subhash, 2004). Further advancements in this model were contributed by Avalle et al. 

Abreviation 
PPE Piezoresistive porous elastomer 
TPU Thermoplastic polyether urethanes 
FKM Fluoroelastomer 
PDMS Polydimethylsiloxane 
MF Melamine formaldehyde resin 
CB Carbon black 
E-skin Electronic skin 
PPN Porous piezoresistive nanocomposite 
PF Piezoresistive foam 
GA Gibson and Ashby 
OC Octadecagon 
FCC Face-centered cubic 
BCC Body-centered cubic 
HCP Hexagonal close-packed 
EAC Ethyl acetate 
DMF N,N-dimethylformamide 
SEM Scanning electron microscope 
FEA Finite element analysis 
ADAM Adaptive moment estimation 
PFTN Porous fluoroelastomer- thermoplastic polyether urethanes nanocomposite 
PTN Porous thermoplastic polyether urethanes nanocomposite 
PFN Porous fluoroelastomer nanocomposite 
UMAT User-material subroutine  
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(2007); Goga (2011); Cousins (1976); Sherwood & Frost (1992), and others. Due to the complexity of deformation and evolution 
within a porous material’s internal structure, the mentioned models effectively capture the mechanical behavior of diverse porous 
materials using a limited set of essential fitting parameters. 

The porosity of the matrix plays a crucial role in improving sensor sensitivity by providing channels or void spaces for the 
nanoparticles to move within, increasing their contact with each other, and enhancing the efficiency of electron transport (Ji et al., 
2022). For example, Fig. 1d also presents the intrinsic resistance curve of PF and PPN under linear cyclic loading obtained by four-wire 
methods, which shows a significant resistance overshooting at the first cycle. Additionally, by adjusting the porosity of piezoresistive 
porous nanocomposites based on TPU matrixes, different piezoresistive curves at first compression can be obtained, as shown in 
Fig. 1e. The graphical results indicate that both positive and negative piezoresistive features can coexist within a single material 
system. In the existing definitions of piezoresistive properties, we primarily rely on the increase and decrease of electrical resistance to 
define positive and negative piezoresistive characteristics, respectively. Increasing the porosity can lead to a change from a positive 
piezoresistive curve (resistance increasing with compression) to a negative one (resistance decreasing with compression), with the 
resistance increasing under larger deformation. Nevertheless, the underlying mechanism of porous piezoresistive sensing is intricate, 
prompting researchers to propose various models to elucidate the intricate principles governing piezoresistive properties. Principally, 
the tunneling effect prevails, positing that the reduction in electrical resistance arises from the diminished spacing between conductive 
particles (Kaiser, 2000). Moreover, alterations in geometric structures impacting piezoresistive behavior are encapsulated by ΔR /R =
(1 + 2μ)+ Δρ /ρ(ν is Poisson’s ratio) (Vimala & Vandrangi, 2023). In addressing the heightened piezoresistive sensitivity inherent in 
porous structures, Li et al. conducted a meticulous analysis of cross-sectional images, revealing that the collapse and shrinkage of 
porous structures contribute to an augmented mutual contact between pore walls, thereby fostering an enriched conductive network 
within the porous structure (Li et al., 2021). Concurrently, an equivalent network model, which considers the mutual contact of pore 
walls and incorporates tunneling theory, is introduced for a more comprehensive understanding (Zhang et al., 2017; Zhao et al., 2019). 
Additionally, Wu et al. proposed that microcrack junctions lead to the disruption of local conductive pathways, resulting in an 
elevation of electric resistance under small applied strain (Wu et al., 2016). Beyond the quasi-static piezoresistive performance dis-
cussed earlier, Fig. 1f illustrates the bulk resistance characteristics of PPN during compression, relaxation, and creep behaviors. It is 
observed that resistance decreases with relaxation following compressed deformation (λ = 0.5), implying that internal 
micro-deformation is linked with resistance. Upon releasing the compression, resistance overshooting indicates that microscopic 
cracks or mismatches cause an increase in intrinsic resistance during the creep stage. This crack/mismatch is restorable due to 
resistance reduction at the creep stage. In addition, resistance overshooting during the first cycle can also be restored to its original 
state as the recovery time increases, as shown in Fig. 1 g. Importantly, this overshooting effect persists and does not disappear with 
multiple compressions. In our earlier investigations, a phenomenological model was introduced as an attempt to elucidate this phe-
nomenon. We posited that within confined compressive deformation, the porous architecture experiences concurrent compressive and 
tensile deformations. The augmentation of the conductive network is attributed to the compressive component, while tensile defor-
mation in the pore walls induces molecular chain slippage, consequently leading to the breakdown of the conductive network (Zhang 
et al., 2024). However, extant models lack the precision required to elucidate the microstructural deformation mechanisms of porous 
elastomers under compression, as well as the nuanced electrical resistance escalation observed under substantial deformations. 

To comprehensively elucidate the unconventional piezoresistive phenomenon observed in PPEs under substantial deformation, we 
developed a novel Octadecagon (OC) cell model. This model, using PPN as an example, elucidates the piezoresistive behaviors of 

Fig. 1. Piezoresistive behavior of porous piezoresistive elastomers (PPEs). SEM figures of two typical PPEs, including a porous piezoresistive 
nanocomposite (PPN) (a) and a piezoresistive foam (Huang et al., 2022) (b). Mechanical response (c) and electrical response (d) of two typical PPEs 
under 75 % compressed strain, with the black line representing PPN and the red line representing PF. (e) Typical resistance sensitivity-compression 
ratio curves of PPNs with different porosities during the first compression. (f) Relaxation and creep curves of resistance changes with time from a 
high porosity PPN. (g) Recoverability of overshot resistance based on a high porosity PPN. 
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porous elastomer through a deformation model of beam. The model accounts for large compressed deformation, hyperplastic prop-
erties of elastomer matrix, closure of micropore, as well as restorable microcrack and mismatch. In comparison to traditional models 
such as the GA cell based on face-centered cubic (FCC) and Kevin cell, both the Octahedral cell and Rhombic dodecahedron cell, which 
are based on body-centered cubic (BCC), follow the hexagonal close-packed (HCP) rule of porogens. This aspect makes the OC cell 
more compatible with the actual arrangement of porogens, particularly inorganic porogens. To verify the impact of crucial parameters, 
machine learning was implemented to define these parameters. The study performed extensive experiments on intrinsic piezoresistive 
behaviors of PPNs to precisely fit the stress and resistance changes during compressed deformation. Additionally, the research 
identified the effects of buckling of pore wall, closure of pore, and restorable mismatch on positive piezoresistive properties and 
resistance overshooting. This comprehensive study outlines the first detailed piezoresistive mechanism behind the bidirectional 
piezoresistive phenomenon and resistance overshooting of PPNs. These findings open new avenues for practical applications and 
development of flexible electronics, biomedical engineering, sensors, and energy absorbers utilizing porous piezoresistive materials. 

2. Piezoresistive model and mechanism of PPNs 

2.1. Fabrication of PPNs 

The current study employs the sacrificial NaCl templating method (S1) to fabricate PPNs with excellent resistance-strain linear 
relationships and larger pressure ranges (Zhao et al., 2021). The matrix of PPNs comprises typical linear polymer TPU and typical 
crosslink polymer FKM, which are dissolved in N,N-dimethylformamide (DMF, Aladdin) solvent and ethyl acetate (EAC) solvent (99.5 

Fig. 2. Octadecagon (OC) cell model. (a) The interactions between the pore-generating agent and the matrix material during the formation of the 
porous structure. (b) The HCP structure of the pore-generating agent. (c) The OC model, which is based on the HCP structure of the pore-generating 
agent. (d) The fabrication process of the OC model. (e) Schematic representations of the porous structure. (f) Simplified schematic representations of 
the periodic OC structures. (g) Schematic representation of an individual OC unit cell. (h) Schematic representation of the equivalent circuit diagram 
of the beams within the OC unit cell. 

J. Zhang et al.                                                                                                                                                                                                          



International Journal of Engineering Science 201 (2024) 104091

6

%, Aladdin), respectively, as the precursor solution. To enhance the dispersion uniformity, CB nanoparticles are dispersed into EAC 
solvent (99.5 %, Aladdin) using sonication (JY92-IIDN, SCIENTZ). Planetary ball milling (F-P400, FOCUCY) is used to grind the NaCl 
sacrifice template into microparticles (~30 μm). Then, NaCl microparticles and CB solvent are mixed into the matrix’s solvent to form 
the precursor slurry after 30 min of stirring. The precursor slurry is evenly coated on a glass plate and thermally processed to remove 
organic solvents (DMF and EAC) to form a curing object. Subsequently, immersion of the curing object in water for 12 h ensures 
complete dissolution of NaCl microparticles, forming the desired PPNs. Finally, a sheet machine (C420, Camoga) and laser cutting 
machine (UV-3C, Han’s Laser) are employed to control the thickness, width, and length of the dimensional sensor. 

2.2. Octadecagon (OC) cell 

Conductive nano-fillers can be dispersed effectively in the cell ligament of the polymer matrix for PPNs. Scanning electron mi-
croscope (SEM) images of PPNs, displayed in Fig. 1a, show a dense permutation distribution of pores with the hole wall appearing to 
have a bumpy state due to solvent evaporation. In Fig. 2a, the positional relationship between the porous conductive matrix and the 
porous pore-form agent during the formation of the porous structure is demonstrated. Due to the absence of relative positional 
constraints, the pore-form agent exhibits an HCP packing structure, as illustrated in Fig. 2b. Based on the HCP packing structure of the 
pore-form agent, the OC model is proposed in this study, as illustrated in Fig. 2c. This figure illustrates a detailed representation of the 
spatial relationship between the pore-form agent and the porous skeleton. The construction process of the OC cell is explained in detail 
in Fig. 2d. A circular array deformation with three elements was carried out on the central symmetry line, originating from a beam 
model with a tilt angle of α and a slenderness ratio of η = t /L. Further, a mirror transformation was performed in the horizontal plane 
based on the circular array transformation to form an OC unit cell. Simultaneously, Fig. 2e shows a schematic representation of the 
porous structure and its simplified periodic OC unit cell structure (Fig. 2f). Fig. 2 g presents a schematic representation of an individual 
OC unit cell, while Fig. 2h displays the schematic representation of the equivalent circuit diagram of the beams within the OC unit cell. 
According to the topological structure of the OC cell, the relation between relative density (χ) (the ratio of the density of the porous 
structure to that of the elastomer matrix) (S2) can be expressed as, 

χ =
(6η2 − 4η3)(1 + tan2α)

3
2

3
̅̅̅
3

√
tanα

. (1) 

In an unconstrained scenario, it can be observed that the beam elements in the OC cell exhibit flexural buckling mode of defor-
mation at both ends. 

Utilizing conductive TPU materials and 3D printing process, a conductive OC cell model is prepared and its equivalent circuit model 
is displayed in the yellow line in Fig. 3a. Fig. 3b illustrates its quasi-static piezoresistive characteristics under axial compressed 
deformation (S3). The electrical resistance change curve demonstrates a pattern of initial decrease followed by an increase, resembling 
the piezoresistive behavior observed in PPN, as illustrated by the red line in Fig. 1e. The compressed force curves of the OC cell show an 
exponential increase in yield after a linear increase, akin to the stress response of all-directional conductive foam. Additionally, Fig. 3c 
depicts the compression, relaxation, and creep characteristics of the piezoresistive response of the OC cell, which are similar to the 
intrinsic resistance response of the PPN. During the relaxation phase, the resistance decreases over time due to a relaxation response to 
the deformation of the elastomer matrix, as depicted by the red line in Fig. 3c. Upon releasing the compression, the resistance 
overshooting first shows a step increase and then decreases with time. This observation further suggests that some form of microscopic 
cracks or mismatch increases the intrinsic resistance during the compressed stage, and this microscopic crack or mismatch is restorable 
due to the reduction of resistance at the creep stage (Wu et al., 2016). 

2.3. Beam model within the OC cell 

Fig. 4 displays the structural representation of the beam model of the OC cell. Based on the symmetry of the model in Fig. 2d, each 

Fig. 3. Piezoresistive behaviors of an OC unit cell. (a) the OC unit cell made by 3D printing technology. (b) Quasi-static piezoresistive behavior of 
the OC unit cell. (c) Piezoresistive relaxation and creep behaviors of the OC unit cell. 
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beam can be considered as a perfectly equivalent beam, as depicted by the red lines in Fig. 4a. Fig. 4b illustrates the deformation shape 
of the beam under compression. Thus, a simplified mechanical model of the beam can be proposed as shown in Fig. 4c. Furthermore, 
the static equilibrium equations of the beam model can be obtained as, 

⎧
⎨

⎩

Fx = − Frcosφ
Fy = − Frsinφ
M = ML + Fy(xm − x) + Fx(ym + y)

, (2)  

where Fx and Fy represent forces along the x-direction and y-direction, respectively. Fr is the resultant force from loading and sym-
metric conditions. (x, y, z) is Cartesian coordinates. M represents the bending moment in the z-direction, whileML is the bending 
moment at the free end. 

(
xm, − ym

)
represents the coordinates of the free end, and φ denotes the direction of the resultant force along 

the x-direction. Thus, the governing equation under large deformation can be written as 
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

dθ
ds

=
ML − Frsinφ(xm − x) − Frcosφ(ym + y)

EI
dy
ds

= sinθ

dx
ds

= cosθ

, (3)  

where s is the local coordinate of the beam, and θ is the angle of the cross-section. Erepresents the effective Young’s modulus of the base 
materials, while I = t4 /12 denotes the moment of inertia of the cross-section. t is the side length of the square cross-section. Through 
the differential operation of the first term at Equation (3a), the quadratic differential equation describing the deformation of the beam 

Fig. 4. Beam models describing bending and buckling cell ligaments, closure of pores, and mismatch and microcrack within pore walls. (a) Perfectly 
equivalent beam within the OC cell. (b) The deformation shape of the beam under compression. (c) A simplified mechanical model of the beam. (d) 
Schematic representation of a porous structure. (e) Strain distribution contour of the porous structure after compression. (f) Schematic represen-
tation of pore closure in the porous structure. (g) Schematic representation of the misalignment and tensile strain generated during uneven pore wall 
compression. (h) Strain distribution contour caused by pure bending of the beam elements. (i) Simplified mechanical model of mismatch and 
microcrack within pore wall. 
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can be written as 

d2θ
ds2 =

Frsinφ
EI

cosθ −
Frcosφ

EI
sinθ, (4)  

2.3.1. Large deflection bending deformation 
When the end of the beam is free and the head is fixed, the beam model will produce bending deformation with a large deflection 

under compression. The boundary condition for this scenario can be written as follows: 
{

s = 0, θ = 0, x = 0, y = 0
s = L, θ = 0, x = xm, y = − ym

. (5) 

If there is an inflection point donated as P, in which s = s0,M = 0 and θ = − θ∗. Thus, the undetermined constant C can be obtained 
as, 

C = −
Fr

EI
cos(θ∗ +φ). (6) 

The transverse free boundary condition at the free hand gives that there is no transverse force loading on the hand, which yieldsφ =
π /2 − α. Thus, 

dθ
ds

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−

̅̅̅̅̅̅̅
2Fr

EI

√
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
sin(α + θ) − sin(α − θ∗)

√
, 0 ≤ s ≤ s0

̅̅̅̅̅̅̅
2Fr

EI

√
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
sin(α + θ) − sin(α − θ∗)

√
, s0 ≤ s ≤ L

. (7) 

The length of the beam can be obtained as 

L =

∫ 0

− θ∗

2
̅̅̅̅̅
2Fr
EI

√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
sin(α + θ) − sin(α − θ∗)

√ dθ (8) 

Thus, the angle of the cross-section (θ∗) at the inflection point P can be obtained. Furthermore, the displacement at the free ending 
of the beam can be obtained as 

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

xm =

∫ 0

− θ∗

2cosθ
̅̅̅̅̅̅̅
2Fr

EI

√
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
sin(α + θ) − sin(α − θ∗)

√
dθ

ym =

∫ 0

− θ∗

− 2sinθ
̅̅̅̅̅̅̅
2Fr

EI

√
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
sin(α + θ) − sin(α − θ∗)

√
dθ

, (9)  

2.3.2. Buckling deformation with large deflection 
According to Eq. (4), The curvature equation of a flexure can be written as 

dθ
ds

= ±

̅̅̅̅̅̅̅
2Fr

EI

√
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
cos(φ − θ) − cos(φ + θ∗)

√
(10)  

where the plus and minus signs represent the concave-convex relationship of the flexural line. The number of inflection points of the 
flexure is denoted as n (S4). When n is an even number, the buckling mode exhibits a symmetric buckling mode. When n is an odd 
number, the buckling mode exhibits an asymmetric buckling mode. Thus, the length of the beam and the displacement condition of the 
beam head (see Appendix A) can be written as: 

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

L = 2n
∫ θ∗

0

1
̅̅̅̅̅̅̅
2Fr

EI

√
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
cos(φ − θ) − cos(φ + θ∗)

√
dθ

xm = 2n
∫ θ∗

0

cosθ
̅̅̅̅̅̅̅
2Fr

EI

√
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
cos(φ − θ) − cos(φ + θ∗)

√
dθ

ym = [1 − ( − 1)n
]

∫ θ∗

0

sinθ
̅̅̅̅̅̅̅
2Fr

EI

√
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
cos(φ − θ) − cos(φ + θ∗)

√
dθ

. (11) 

Thus, the compression ratio λ and Poisson ratio μcan be obtained as 
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λ =
xmsinα − ymcosα

Lsinα , μ =
L − xm − ymtanα
L − xm + ymcotα (12)  

2.4. Electrical model 

The quasi-static governing equation of potential distribution can be written as 

ΔU = − J / ρ (13)  

where U is the potential, and J is the electrical current density. According to Ohm’s Law, the conservation of electrical current at the 
beam model can be expressed as ∇J = 0. Thus, the equivalent resistance (Arh et al., 2021; Notaros, 2011) can be calculated by 

R =

∫

L

1
∫ ∫

A
ρ− 1dAc

dx. (14) 

The electrical properties of porous nanocomposites are based on conducting filler additives dispersed within insulating matrices 
forming pore walls. Considering that the behaviors of a single tunnel junction can reasonably describe the conductivity of a composite 
solid, Ezquerra et al. (Ezquerra et al., 1990) proposed an approximate model to describe its conducting behaviors: 

ρ = ρ0e2Xd, (15) 

X =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2bV(T)

√
/h,ρ0 is the electrical resistivity of conductive fillers, b is the mass of the charge carriers, V(T)is the temperature- 

modified barrier height, d is the distance between conductive particles and is approximatively proportional to ϕ− 1/3 (ϕis the vol-
ume fraction of conductive fillers (S2)). In the porous piezoresistive materials formed by inorganic salt pore-forming methods, d can 
change with porosity due to the microscopic structure formed on the pore wall by solvent evaporation. Besides, the initial distance d0 

between conductive particles depends on the relative density χ, as given by d0 = ζχ− βϕ− 1/3, where ζ is the proportionality coefficient 
and β is the index of correlation (S5). Moreover, ε (strain of conductive composite solids) can change d directly and the equivalent 
resistivity of PPN can be modified as 

ρ = ρ0e2Xd0(1+ε) = ρ0e2Xζχ− βϕ− 1/3(1+ε). (16) 

The strain distribution at the beam can be written as 

εy = − y
dθ
dx

. (17) 

Substituting Eq. (7), (10, 16) and (17) into Eq. (14) yields as, 

RBeam =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ0L
t2

∫ 0

− θ∗

tXd0

Lsinh

(
tXd0

2

̅̅̅̅̅̅̅
2Fr

EI

√
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
sin(α + θ) − sin(α − θ∗)

√
)dθ, forbending

nρ0L
t2

∫ 0

− θ∗

tXd0

Lsinh

(
tXd0

2

̅̅̅̅̅̅̅
2Fr

EI

√
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
cos(φ − θ) − cos(φ + θ∗)

√
)dθ, forbuckling

, (18)  

2.5. Weighted superposition principle 

Porous materials exhibit a wide range of heterogeneous factors, such as variations in cell size, shape, and thickness of pore walls, 
which give rise to diverse buckling modals. In Fig. 4d, a finite element analysis (FEA) model depicting a porous structure has been 
meticulously constructed. This model serves as a foundation for analyzing the mechanical behavior of the porous material under 
various conditions. Subsequently, Fig. 4e presents the strain distribution contour plot of the porous structure subjected to compressive 
loading. The intricate pattern of strain distribution visible in the contour plot clearly illustrates the complex deformation behavior 
exhibited by the pore walls. Specifically, it can be observed that the pore walls undergo a combination of bending deformation and 
buckling instability, which are key factors governing the overall mechanical response of the porous structure. As a result of pore 
collapse and pore wall buckling, the mechanical characteristics of porous materials display a yielding-first and hardening-later curve 
(Huang et al., 2018). The stress curves of PPN represent a transition state from bending mode to buckling mode. It is therefore essential 
to establish a transition function that accounts for the various buckling models due to the heterogeneity of cells in the material (Grossi 

et al., 2021; Liu et al., 2022). A Boltzmann function with a sigmoidal curve 
(

fb = 1 −
(
1 + e(λ− λ0)/w)− 1

)
is deemed suitable to represent 

this transition, characterized by a center of transition λ0 and a transition constant w (Sohrab, 2022). Thus, the equivalent stress σ and 
the equivalent resistance R (S6) can be expressed as 
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{
σ = fbσbending + (1 − fb)σbuckling
R = fbRbending + (1 − fb)Rbuckling

. (19)  

whereσbending, σbuckling,RbendingandRbuckling are stress and resistance from bending deformation and buckling deformation, respectively. 

2.6. Closure of pore and hyper-elastic characteristics of elastomer matrix 

The irregular porous structure of the analyzed samples may exhibit partial closure in certain areas when compressed, as illustrated 
in Fig. 4f. This phenomenon leads to an increase in both the conductive path and the effective modulus, consistent across samples with 
highly dense porous structures, as predicted by the effective medium theory (Rong et al., 2019; Li et al., 2019). The compression and 
deformation processes, supported by previous research (Li et al., 2019), reveal that pore collapse increases exponentially and ap-
proaches zero as porosity decreases. In this study, an exponential decay function (Zhong-Jie & Gen-Qi, 2012) is utilized to depict the 
change in resistance, as 

fc = 1 − A
(

e
− λ
τ − e

− 1
τ

)/(

1 − e
− 1
τ

)

. (20)  

where τ represents the free parameter contingent upon the rate of pore closure and A denotes the relative resistivity of a solid con-
taining fully closed pores. In order to explicate the characteristics of stress variation with deformation, this study employs exponential 
functions (Rusch, 1970; Storåkers, 1986). By accounting for pore closure, Equation 19 is reformulated as 

{
σ = λ− a( fbσbending + (1 − fb)σbuckling

)

R = fc
(
fbRbending + (1 − fb)Rbuckling

) , (21)  

where parameter a is unconstrained. Additionally, to reconstitute the stress function in Eq. (21), the constitutive stress-deformation 
relations σ = G

(
λ − λ− 2) (where G symbolizes the shear modulus of the matrix) under uniaxial loading conditions within the elasto-

meric matrix of PPN are considered (Shrimali et al., 2020). Thus, the stress part in Eq. (21) can be rewritten as 

σ = (λ− c1 − λ− c2 )
(
fbσbending +(1 − fb)σbuckling

)
, (22)  

where parameters c1and c2 are free and depend on the structure of the irregular porous material and the elastomeric matrix. 

2.7. Recoverable mismatches and microcracks under large deformation 

Heterogeneous porous materials can exhibit both bending and buckling modes simultaneously, necessitating a balance between 
them to maintain stability. To achieve this balance, transverse shear deformation is triggered (Gu et al., 2023), which has little effect on 
vertical deformation as demonstrated in Fig. 4 g. However, the presence of large deformation can also lead to microcracks, causing a 
decrease in conductivity and an increase in resistance (Han et al., 2020). This phenomenon can be modeled using the tensile defor-
mation of a beam element, as illustrated in Fig. 4i. As a result of the mismatch of transverse deformation δt, a deformed length can be 

calculated using Lʹ =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(Lsinα)2
+ (Lcosα + δt)

2
√

. Subsequently, the resistance of the tensile beam can be obtained using Rbeam =

(
ρ0L /t2)e2Xd0

( ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1+2Δμcos2α+(Δμcosα)2

√
− 1
)

, where it is noted that the difference of Poisson’s ratio between two adjacent cells is denoted by 
Δμ = δt /Lcosα. Due to its high accuracy and excellent flexibility in quantifying material degradation, a modified exponential growth 
model, a modified exponential growth model (Xu et al., 2022; Su et al., 2023) is introduced to describe recoverable mismatches and 
microcracks with deformation, characterized by two attributes, λ and t, as given by 

Δμ =

(

e
− λ
ν − e

− 1
ν

)/(

2 − 2e
− 1
ν

)

, (23)  

where parameter ν represents changing trend of cracks and the value is close to 0.5 in the case of limiting compression. In the limit 
where λ approaches zero, the corresponding Δμ attains a value of 0, indicating pronounced compressibility in the porous material. In 
this scenario, the deformation primarily involves the bending of pore walls without observable misalignment. Conversely, as λ ap-
proaches unity, the Δμ tends towards 0.5, suggesting that materials with closed pores exhibit near-incompressibility. A comprehensive 
understanding of the intricate mechanical behavior of heterogeneous porous materials is provided by this equation. 

2.8. Dimensionless analysis 

Utilizing the stress response relation (σ = 2
̅̅̅
3

√
Fv /L2 and Fv = Frsin(α + φ)) of the cell, the stress-strain of PPN can be written as, 

σ
E
=

̅̅̅
3

√

3
η4(λ− c1 − λ− c2 )

{
D2

bucklingsin(α+φ)+ f
[
D2

bending − D2
bucklingsin(α+φ)

]}
. (24)  

where 
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⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Dbending =

∫ 0

− θ∗

1
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
sin(α + θ) − sin(α − θ∗)

√ dθ

Dbuckling =

∫ 0

− θ∗

1
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
cos(φ − θ) − cos(φ + θ∗)

√ dθ

. (25) 

Similarly, the resistance response of PPN can be obtained as 

S =
RBeam

R0
= fc

[
fbCbending +(1 − fb)Cbuckling

]
eXd0MShear . (26)  

where 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Cbending =

∫ 0

− θ∗

ηXd0

sinh
(

DTFMηXd0

2
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
sin(α + θ) − sin(α − θ∗)

√
)dθ

Cbuckling =

∫ 0

− θ∗

nηXd0

sinh
(

DTFMηXd0

2
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
cos(φ − θ) − cos(φ + θ∗)

√
)dθ

MShear =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 + 2Δμcos2α + (Δμcosα)2
√

− 1

. (27)  

Fig. 5. Analytical results from the beam within OC cell. (a) The potential contours of the beam under bending deformation. The dimensionless stress 
(b) and sensitivity to deformation (c) of the beam under bending deformation from the FEA and analytical models. The dimensionless stress (d) and 
sensitivity to deformation (e) of the beam under different buckling modes (1 ≤ nandφ= 0) from the analytical model. Yield characteristics (f) and 
the sensitivity to deformation (g) changing with increasing loading angles(0 ≤ φ ≤ π /2 − αandn = 2). (h) Poisson’s ratio of the beam under 
compression. (i) The resistance changes introduced by the stretching of the hole wall or the microcracks within the pore wall. 
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3. Verification: piezoresistive behaviors of PPNs 

3.1. Modal characteristics of OC cell 

The FEA analysis using ABAQUS with a user-material subroutine (UMAT) subprogram (S7) aims to validate the predicted stress and 
sensitivity of intrinsic resistance of an OC model. The FEA model involves a beam with specific geometric (L = 20mm, t = 2mm,

andα= 30∘), mechanical properties (E = 200MPaandμ = 0.49), and electrical properties (Xd0 = 5andρ = 10Ω ⋅ mm). The loading 
conditions include symmetrical pressure in the vertical direction, constant current on the left side of the models, and constant tem-
perature (potential) on the right side of the beam. To simulate bending models, free-moving edge bars are applied at the loading end. 
Moreover, a couple temperature-displacement module is utilized to analyze the resistance-deformation relationships in the model. To 
ensure the accuracy of FEA, the convergence (indicating the number of elements needed to ensure that the finite element analysis 
results are not affected by changes in the mesh size) is depicted in Figure S6. We define that the simulation results remain stable at or 
above 99.5 % convergence with the increase in the number of elements. The results indicate that approximately 30,000 C3D8T ele-
ments are employed to ensure sufficient convergence while dispersing the model. Fig. 5a illustrates the potential contours of the beam 
under bending deformation, while Figs. 5b and c show the dimensionless stress and sensitivity to deformation from the FEA and 
analytical models, indicating high consistency between them. This demonstrates the correctness of the theoretical model calculation. 
Based on this theoretical model, we have conducted a further analysis to investigate the impact of the following key parameters on the 
piezoresistive response. 

Figs. 5d and e demonstrate the piezoresistive behaviors of different buckling modes (1 ≤ nandφ = 0), where stress and sensitivity 
to deformation increase with an increase in the buckling mode. Moreover, the piezoresistive sensitivity from buckling deformation at 
even inflection points is higher than that from odd inflection points. Previous SEM figures (Huang et al., 2022) also suggest that the 
buckling mode of order 2 is the most common in porous materials. As for the effect of different loading angles of the buckling 
deformation on piezoresistive behaviors, Figs. 5f and g show obvious yield characteristics, and the sensitivity to deformation reduces 
with increasing loading angles(0 ≤ φ ≤ π /2 − αandn = 2). In Fig. 5f, a discernible non-zero stress at the stretch (λ=1) is observed for 
the specific case of φ=0. This phenomenon is attributed to the axial pressure along the beam axis when φ=0, rendering the beam in a 
stable state. Consequently, there exists a yield stress causing non-zero stress at λ=1 for the case φ=0. In instances where the applied 
pressure is below the critical buckling yield stress of the beam, no buckling occurs, resulting in negligible displacement, as dictated by 
the large deflection formula (Eqs. (11) and 12). However, surpassing the critical buckling yield stress induces rapid buckling and a 
subsequent substantial increase in deformation. The dimensionless yield stress is about 0.08 %. Additionally, Poisson’s ratio under 
compression is calculated in Fig. 5h, indicating that the bending mode of the beam exhibits a common Poisson’s ratio effect, close to 
− 0.1~− 0.3, which has been proven by many research studies (Kováčik, 2008; Zhang et al., 2024). However, the buckling mode shows 
a negative Poisson’s ratio effect under large deformation, revealing the collapse of the hole wall causing the volume to shrink. To 
simplify the buckling model, the second-order buckling mode is used as the typical buckling deformation in follow-up studies. Due to 
complex deformations such as bending and different buckling deformations existing in a complex porous structure, hole walls can be 
stretched or misaligned to coordinate these complex deformation structures. Fig. 5i illustrates the resistance changes introduced by the 
stretching of the hole wall or the microcracks within the pore wall. 

Fig. 6. Analytical and experimental piezoresistive behaviors of PFTN with a mass ratio of 7:3 between FKM and TPU. The pore distribution (a) and 
structure (height-width ratio) distribution (b) from image recognition software ImageJ. Resistivity changing different CB content (ϕ) (c) and relative 
density (χ) (d). (e) Three fitting functions considering different factors, such as only the over-transition from bending to buckling, the mismatch and 
microcracks, and finally the closure of the pores. (f) The fitting curves of stress considering the above three factors. (g) Boltzmann transition function 
from bending deformation to buckling deformation. (h) The exponential decay function describing the closure of pores and the resistance increase 
curve from mismatches and microcracks. 

J. Zhang et al.                                                                                                                                                                                                          



International Journal of Engineering Science 201 (2024) 104091

13

3.2. Quasi-static compression features of piezoresistive properties of PPN 

To further verify the accuracy and practicability of the analytical model, PPNs are employed in experimental analysis. These PPNs 
are based on an inorganic salt pore-making process, with different elastomeric matrices (such as a typical linear polymer (TPU), a 
typical crosslink polymer (FKM), and their mixture) and different porosity. As an example, porous fluoroelastomer- thermoplastic 
polyether urethanes nanocomposite (PFTN) with a mass ratio of 7:3 between FKM and TPU is used, and Figs. 6a and 6b show the pore 
distribution and structure (height-width ratio) distribution from image recognition software ImageJ. The average diameter distri-
bution is close to the particle size of inorganic salts, and the aspect ratio indicates that the pore structure is nearly spheroid. To ensure 
uniform electrical conductivity across all directions, multiple measures are taken to control the physical properties of the material. 
Initially, nanoscale CB particles are utilized due to their excellent dispersibility and adsorption characteristics. Ultrasonic dispersion 
techniques and stabilizers are utilized to maximize the resistance of fine particles to Brownian motion, thereby minimizing the 
agglomeration of CB (Norisuye, 2017). Furthermore, inorganic salt pore-forming agents are employed. These agents undergo a 
rigorous grinding and sieving process to achieve particles with a targeted particle size distribution between 400 mesh and 500 mesh. 
The slurry viscosity is precisely controlled at a value exceeding 20,000 mPa⋅s. Based on the Stokes viscosity law, this precise control of 
viscosity minimizes the settling velocity of the dispersed phase particles, ensuring their uniform distribution within the slurry (Langlois 
et al., 2019). Finally, following the coating and drying of the sample, the sheet material undergoes a precision abrasive cutting process 
to remove the top and bottom surfaces. The resulting target sample has a thickness of approximately 1 mm, which approximately has 
isotropic electrical conductivity (Figure S8). Utilizing the aforementioned measures, target samples of PPNs with varying carbon 
nanoparticle content (ϕ) and relative density (χ) (S2) have been obtained. The sensitivity parameters (Xd0, sensitivity to deformation) 
of pore wall deformation have been rigorously established. Furthermore, the alterations in resistivity as a function of both carbon 
nanoparticle content and relative density are precisely depicted in Figs. 6c and d, respectively. Eq. (16) provides a fitting formula ρ =
2.484 × 10− 5e3.27χ− 0.133ϕ− 1/3

/χ, which can be used to obtain the value of Xd0 = 9.05when ϕ = 0.098andχ = 0.160. Additionally, Eq. (1) 
yields η = 0.166 whenχ = 0.160. Using the adaptive moment estimation (ADAM) optimization algorithm (Xie et al., 2021), these free 
parameters can be optimized based on experimental data to obtain the optimal solution (S8). Fig. 6e shows three fitting functions that 
consider different factors, such as only the over-transition from bending to buckling 

(
Ŝ1 = fbCbending +

(
1 − fb

)
Cbuckling

)
, taking into 

account the microcracks 
(
Ŝ2 =

[
fbCbending +

(
1 − fb

)
Cbuckling

]
eXd0MShear

)
, and finally considering the closure of the pores

(
Ŝ3 =

fc
[
fbCbending +

(
1 − fb

)
Cbuckling

]
eXd0MShear

)
. All three fitting functions have a fitting degree above 99.5 %. When considering the closure 

of pores and micro-cracks, the piezoresistive curve can be better reduced. Based on the fitting function (Ŝ3), the fitting curves of stress 
are shown in Fig. 6f. The fitting degree (R2) between the analytical model with parameters in Table 1 and the experimental results is 
more than 99 %. Fig. 6 g shows the Boltzmann transition function from bending deformation to buckling deformation with the 
transition center λ0 = 0.6673. Fig. 6h shows the function fc describing the closure of pores and the resistance increase curve 
eXd0MShear from mismatches and microcracks. Both functions exhibit an exponential increase or decrease. 

Fig. 7 shows the piezoresistive properties of PPN with different porosity (relative density) achieved by changing the usage of a pore- 
making agent (S2). Figs. 7a and 7b show the deformation sensitivity (Xd0) of the pore wall and slenderness ratio (η) as they change 
with relative density. Increasing the relative density reduces the deformation sensitivity and increases the slenderness ratio. From 
these figures, it can be observed that when χ is equal to 0.137 and 0.192, Xd0 is equal to 9.24 and 8.83, and η is equal to 0.153 and 
0.183, respectively. Substituting these parameters into Eqs. (24) and 26 yields the fitting curves of stress and resistance sensitivity 
shown in Figs. 7c and 7d with fitting degrees above 99 %. The free parameters can be obtained from Table 1. By comparing with the 
curves for χ = 0.160, some patterns become evident. Increasing the relative density increases the stress, which is easy to understand 
due to the reduction of the effective medium for supporting forces. However, the resistance sensitivity decreases regardless of whether 
the relative density increases or decreases. The Boltzmann function (Fig. 7e) shows that the yield center also reduces with decreasing 
resistance sensitivity, indicating that PPN has the fastest transition from bending to buckling state, but increasing relative density may 
produce too much constraint, and decreasing relative density may be more suitable for bending mode generation. Fig. 7f depicts the 
pore closure behavior and the characteristics of microcrack propagation or mismatches in PPN with varying porosities under 
compressive conditions. The findings demonstrate that an increase in porosity results in an increase in sensitivity, but also leads to 
mismatched pore walls and increased occurrence of cracking. Therefore, PPN with χ=0.137 exhibits lower piezoresistive sensitivity 

Table 1 
Key parameters of the analytical model describing the piezoresistive behaviors.    

Electrical model Electrical and mechanical models Mechanical model 

χ τ A ν λ0 w c1 c2 

PPN-1 (0.5 mm/min) 0.166 0.1038 3.5832 0.1733 0.6673 0.1193 0.7924 0.5518 
PPN-1 (1.0 mm/min) 0.166 0.1362 3.1244 0.1480 0.6822 0.0830 0.8965 0.6460 
PPN-1 (1.5 mm/min) 0.166 0.1311 3.0451 0.1179 0.7154 0.0843 0.9463 0.6864 
PPN-1 (high ambient temperate) 0.166 0.1097 2.2514 0.1138 0.5696 0.0933 0.6945 0.3654 
PPN-2 0.183 0.0687 8.4790 0.1424 0.5716 0.1257 0.6314 − 0.1663 
PPN-3 0.153 0.6361 1.1776 0.5429 0.6213 0.1247 0.2122 0.0335 
PTN 0.2 0.0072 3.5789 0.2223 0.4680 0.2017 0.4778 − 1.6613 
PFN 0.176 0.0834 2.0255 0.3885 0.7352 0.1428 0.6470 0.1864  
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Fig. 7. Piezoresistive properties of PPN with different porosity (relative density) achieved by changing the usage of the pore-making agent. The 
deformation sensitivity (Xd0) (a) and slenderness ratio (η) (b) changing with relative density. The experimental and fitting curves of stress (c) and 
resistance sensitivity (d) changing with relative density. (e) The Boltzmann function transiting from bending to buckling state. (f) The exponential 
decay function describing the closure of pore and the resistance increase curve changing with relative density. 

Fig. 8. Piezoresistive response characteristics of PPN utilizing different elastomeric matrices (TPU and FKM). Aperture distribution (a, c) and 
aperture aspect ratio distribution (b, d) of PTN and PFN, respectively. The changing curves of resistivity of PTN (e) and PFN (g) along with relative 
density. The deformation sensitivity of PTN (f) and PFN (h) changing with relative density. The matching stress curves (i) and resistance sensitivity 
curves (j) of PFTN (black line), PTN (red line), and PFN (blue line) between the analytical model and experimental data. (k) The Boltzmann function 
transiting from bending to buckling state of PFTN (black line), PTN (red line), and PFN (blue line). (l) The exponential decay function describing the 
closure of pore and the resistance increase curves of PFTN (black line), PTN (red line), and PFN (blue line). 
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because of its higher porosity. 
In this section, the piezoresistive response characteristics of PPN utilizing different elastomeric matrices (TPU and FKM) are 

compared. Figs. 8a, b, c, and d show the aperture distribution and aperture aspect ratio distribution of these PPNs. The mean of the 
aperture aspect ratio of these PPNs can be obtained as follows: tanαPTN = 0.5085and tanαPFN = 0.575. According to the changing 
curves of resistivity of porous thermoplastic polyether urethanes nanocomposite (PTN) and porous fluoroelastomer nanocomposite 
(PFN) along with relative density in Figs. 8e and 8 g, equations describing resistivity changing with deformation can be obtained as ρ 
= 2.13×10− 4e2.513χ− 0.146ϕ− 1/3

/χ and ρ = 1.94×10− 5e3.45χ− 0.22ϕ− 1/3
/χ for PTN with ϕ=0.0916 and PFN with ϕ=0.1185, respectively. 

Figs. 8f and 8h show the deformation sensitivity changing with relative density. Thus, we can obtain Xd0=2.28 for PTN with χ=0.227 
(yields η=0.2), which is fabricated by 6.5 times usage of pore-making agent and 0.15wt% CB against the matrix, and Xd0=5.70 for PFN 
with χ=0.176 (yields η=0.176), which is fabricated by 6 times usage of pore-making agent and 0.13wt% CB against the matrix. 
Substituting these parameters into Eqs. (25) and 27, Figs. 8i and 8j show the matching stress curves and resistance sensitivity curves 
between the analytical model and experimental data. Different from the piezoresistive behaviors of PFTN, a noticeable rise in resis-
tance occurred in the second half of the compression. Figs. 8k and 8l, combined with SEM figures of PTN and PFN (S9), explain this 
difference in detail. The smooth and complete pore wall structure of PTN makes it more elastic and less prone to yield, and the decrease 
in resistance from the closure of pores is less than the increase from mismatches and microcracks. Due to the micropore within PFN, 
buckling is more likely to occur (blue line in Fig. 8k), and mismatches and microcracks are more likely to occur, increasing resistance 
(blue dot in Fig. 8l). The mixed matrix benefits from the microstructure within the pore wall from FKM, which increases the pie-
zoresistive sensitivity, while the supporting effect of TPU enhances the ability to resist yielding and breaking (S9). 

3.3. Quasi-static cyclic compression feature of PPN 

The preceding studies have demonstrated the analytical model’s capacity to describe the piezoresistive behaviors of PPN and 
explain the complex piezoresistive phenomenon depicted in Figs. 1c, d, and e, which is the combined effect of bending beam, buckling 
beam, pore closure, and mismatches and microcracks within the pore wall. Nevertheless, the apparent resistance overshooting is 
observed upon releasing the compressed PPE in Figs. 1f and g necessitate further analysis. Due to the relaxation effect of the polymer 
matrix, the recovery of the transition from buckling to bending, the opening of closed pores, and the restoration of mismatches and 
microcracks do not precisely coincide with the original function. To model the experimental piezoresistive phenomenon, we employed 
the following equations to describe the recovery of the transition from buckling to bending, the opening of closed pores, and the 
restoration of mismatches and microcracks, 

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

f̃b = 1 −
(
1 + e(λ− λ0)/w̃

)− 1

f̃ c = 1 − [1 − fc(0.25)]
/(

1 + e(λ− λc)/w̃c
)− 1

Δμ̃ = Δμ(0.25) +
(

e
− λ

τ̃ − e
− 0.25

τ̃

)/(

2 − 2e
− 1

τ̃

)
. (28) 

By substituting the above functions into Eqs. (25) and 27, the recovery curves of the dimensionless stress and piezoresistive 
sensitivity can be obtained as shown in Figs. 9a and b. The free parameters for these functions are presented in Table 2, using the PFTN 
sample with χ=0.160. The stress curve exhibits significant hysteresis, where the recovery stress is lower than the loading stress. This 
hysteresis can be attributed to pore collapse and creep of the elastic matrix, leading to faster stress recovery. The steeper transition 
curve from buckling deformation to bending deformation during the recovery process compared to the loading process, as shown in 
Fig. 9c, is due to the higher buckling stress decreasing to the bending stress more rapidly. Regarding the resistance hysteresis, the 
recovery resistance is greater than the loading resistance. According to the analytical model, mismatches and microcracks are the 
primary reasons for increasing resistance during compression. Therefore, the high resistance overshooting (where the recovery 
resistance is 1.4 times the original resistance upon releasing the PFTN) is mainly due to the slow deformation recovery of mismatches 
within pore walls and/or permanent deformation of microcracks within the pore wall (as illustrated in Fig. 9d). This also explains why 

Fig. 9. Cyclic piezoresistive characteristics of the PFTN with a mass ratio of 7:3 between FKM and TPU. The cyclic characteristics curves of 
dimensionless stress curve (a) and piezoresistive sensitivity curve (b). (c) Cyclic transition curves between bending deformation and buckling 
deformation. (d) The cyclic characteristics of the exponential decay function describing the closure of pores and the resistance increase curves from 
mismatches and microcracks within pore walls. 
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many porous PPEs have a low first piezoresistive sensitivity, as observed in Figs. 1d and f. 
In addition, loading speeds and ambient temperature, which are two key factors that determine the piezoresistive response, were 

also studied. Previous research (Madhuri et al., 2020; Zhai et al., 2015; Zheng et al., 2004) on the relaxation and creep behaviors of 
elastomers has revealed that faster loading speeds result in a higher stress response due to the higher mechanical resistance from the 
hysteresis of deformation. In contrast, a higher ambient temperature leads to a decrease in stress response due to the softening effect at 
higher temperatures. Fig. 10a shows a similar stress response of PPN to that of an elastomer, with steeper recovery transition curves (as 
shown in Fig. 10c). Furthermore, faster loading speeds and higher temperatures are beneficial in reducing the hysteresis due to smaller 
creep deformation. Fig. 10b exhibits the piezoresistive response of the PFTN under different loading speeds and ambient temperatures. 
The most noticeable feature is that the resistance overshooting is lower under faster loading speeds and higher ambient temperatures. 
This can be explained by the faster opening of closed pores (as shown in Fig. 10d) and smaller mismatches and microcracks (as shown 
in Fig. 10e) resulting from smaller creep deformation under compression. 

Fig. 11 illustrates the piezoresistive behaviors of PPN with different relative densities and elastic matrices. The stress response (as 
shown in Fig. 11a) reduces with an increase in porosity, which can be easily understood due to the reduction of material effectively 
resistant to deformation (Stoia et al., 2019). However, the resistance response (as shown in Fig. 11b) displays high resistance over-
shooting of the PFTN with χ=0.160. By increasing porosity, a clear pattern can be observed from the transition curve (as shown in 
Fig. 11e), closure and opening of the pore (as shown in Fig. 11f), and changing curves of mismatch and microcracks (as shown in 
Fig. 11 g), indicating faster transition recovery, faster opening of closed pores, and larger mismatch and microcracks are generated. 
However, there are some nonconformities such as higher pore closure of the PFTN with χ=0.160 in the middle of Fig. 11f. This is 
mainly due to the collapsed pores of PPE during the molding process. Therefore, although PFTN with χ=0.137 has a smaller relative 
density, smaller pore closure reduces the piezoresistive sensitivity. Furthermore, Figs. 11c and d exhibit stress recovery and resistance 
recovery of PTN and PFN, respectively. PTN with a high resilience matrix (TPU) shows faster transition recovery (as shown in 
Fig. 11h), smaller pore closure (as shown in Fig. 11i), and smaller mismatch and microcracks (as shown in Fig. 11j), resulting in a lower 
piezoresistive sensitivity compared with similar PFTN with χ=0.192. However, there are more micropores within the pore walls of PFN 
than PFTN, slower transition recovery (as shown in Fig. 11h), smaller pore closure (as shown in Fig. 11i), and larger mismatch and 
microcracks (as shown in Fig. 11j) cause a larger resistance hysteresis loop (as shown in Fig. 11d) due to the lack of supporting effect of 
high resilience matrix (TPU). 

4. Conclusion 

In this paper, an analytical model for PPE has been proposed to reveal the mechanisms of piezoresistive behaviors, including 
bidirectional piezoresistive trends and resistance overshooting. Bending and buckling cell ligaments, closure or opening of pores, and 
mismatch and microcrack within pore wall affect the conductive networks within compressed PPEs. The good agreement between the 
experimental results and analytical results demonstrates the analytical model has a high potential for the design of PPN with excellent 
piezoresistive properties. One of the significant conclusions is that mismatch and microcracks within the pore wall generated by the 
collapse of pores from excessive compressive deformation are the fundamental causes of the bidirectional piezoresistive phenomenon. 
Suitable matrix material composition (such as a mixture of TPU and FKM) can effectively generate uniform pore structures to reduce 
the mismatches and cracks within the pore wall. Increasing porosity increases the closure of pores, which is beneficial to increase the 
piezoresistive sensitivity. The formation mechanism of high resistance overshooting can be explained by that the recovery of mismatch 
and microcrack along with segmental movement increasing resistance is slower than that of bending and buckling deformation from 
the configurational change of the molecular chains, which reduces the resistance. Increasing loading speed and ambient temperature 
can reduce the creep deformation under compression, hence decreasing the overshooting of the resistance. From a broader perspective, 
this study highlights the rational micro/nano structural design with various PPN materials to achieve excellent piezoresistive re-
sponses. Due to the longer creep and relaxation period of elastomer than other solid matrices, the recovery of overshooting resistance 
of the sensor made by PFTN is longer than traditional piezoresistive sensor. 

Table 2 
Key parameters of the analytical model describing the recovery of piezoresistive behaviors.    

Electrical model Electrical and mechanical models Mechanical model 

χ λ̃c w̃c τ̃ λ̃0 w̃ c̃1 c̃2 

PPN-1 (0.5 mm/min) 0.166 0.3822 0.0780 0.1086 0.6874 0.0890 1.6290 1.5555 
PPN-1 (1.0 mm/min) 0.166 0.3803 0.0588 0.1064 0.6352 0.0803 1.3791 1.2543 
PPN-1 (1.5 mm/min) 0.166 0.3478 0.0480 0.0892 0.6151 0.0771 1.3164 1.1658 
PPN-1 (high ambient temperate) 0.166 0.3112 0.0298 0.0925 0.4816 0.0759 0.8108 0.5196 
PPN-2 0.183 0.2651 0.0504 0.1056 0.5814 0.0981 1.1075 0.7756 
PPN-3 0.153 0.6613 0.1013 0.3712 0.4293 0.0700 0.4240 0.2953 
PTN 0.2 0.2651 0.0504 0.1993 0.4389 0.1829 0.6633 0.4507 
PFN 0.176 0.7826 0.0394 0.3232 0.5337 0.1018 1.1135 0.9342  
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Fig. 10. Cyclic piezoresistive characteristics of the PFTN under different loading speeds and ambient temperatures. Cyclic stress response (a) and 
resistance response (b) of the PFTN. Cyclic transition curves between bending deformation and buckling deformation (c), cyclic characteristics of 
the closure of pore(d), and cyclic exponential growth function from mismatches and microcracks within pore walls (e) under different 
loading conditions. 

Fig. 11. The cyclic piezoresistive behaviors of PPNs with different relative densities and elastic matrices. The stress response (a, c) and the 
resistance response (b, d) of PPNs with different relative densities and elastic matrices. The transition curve (e, h), closure and opening of the pore 
(f, i), and changing curves of mismatch and microcracks (g, j) of PPNs with different relative densities and elastic matrices, respectively. 
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Appendix A. Derivation of Eq. (11) for beam length constraint condition and displacement constraint condition 

When n is an even number, the buckling mode exhibits a symmetric buckling mode. Thus, the length of the beam can be written as, 
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Thus, the displacement of the beam end can be written as 
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When n is an odd number, the buckling mode exhibits an asymmetric buckling mode. 

L =

̅̅̅̅̅̅̅
EI
2Fr

√
∑2n

i=1

∫ θ∗sin

(
i+2
2 π
)

θ∗sin

(
i+1
2 π
)

(

sin
(

i − 1
2

π
)

− sin
(

i
2

π
))

̅̅̅̅̅̅̅
2Fr

EI

√
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
cos(φ − θ) − cos(φ + θ∗)

√
dθ

= (n + 1)
̅̅̅̅̅̅̅
EI
2Fr

√ ∫ θ∗

0

1
̅̅̅̅̅̅̅
2Fr

EI

√
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
cos(φ − θ) − cos(φ + θ∗)

√
dθ

− (n − 1)
̅̅̅̅̅̅̅
EI
2Fr

√ ∫ 0

− θ∗

− 1
̅̅̅̅̅̅̅
2Fr

EI

√
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
cos(φ − θ) − cos(φ + θ∗)

√
dθ

= 2n
̅̅̅̅̅̅̅
EI
2Fr

√ ∫ θ∗

0

1
̅̅̅̅̅̅̅
2Fr

EI

√
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
cos(φ − θ) − cos(φ + θ∗)

√
dθ

, (A.4) 

Thus, the displacement of the beam end can be written as 
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To sum up, the displacement constraints of the beam end and the beam length constraints can be summarized as 
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√
dθ

. (A.7)  
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