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Structured Output-Associated Dictionary
Learning for Haptic Understanding

Huaping Liu, Fuchun Sun, Di Guo, Bin Fang, and Zhengchun Peng

Abstract—Haptic sensing and feedback play extremely
important roles for humans and robots to perceive, understand,
and manipulate the world. Since many properties perceived by
the haptic sensors can be characterized by adjectives, it is rea-
sonable to develop a set of haptic adjectives for the haptic
understanding. This formulates the haptic understanding as a
multilabel classification problem. In this paper, we exploit the
intrinsic relation between different adjective labels and develop a
novel dictionary learning method which is improved by introduc-
ing the structured output association information. Such a method
makes use of the label correlation information and is more suit-
able for the multilabel haptic understanding task. In addition, we
develop two iterative algorithms to solve the dictionary learning
and classifier design problems, respectively. Finally, we perform
extensive experimental validations on the public available haptic
sequence dataset Penn Haptic Adjective Corpus 2 and show the
advantages of the proposed method.

Index Terms—Haptic understanding, intelligent robot percep-
tion, kernel dictionary learning, structured output prediction.

I. INTRODUCTION

ANY physical properties of objects, such as hard or
soft, are very difficult to visually ascertain, particu-
larly without some kind of object manipulation [1]-[5]. For
example, a cotton sheet and a white paper are difficult to be
distinguished by their color, while their softness and elasticity
work well. In practice, humans usually glean object properties
through active manipulation of objects by hands, and there-
fore, haptic sensing and feedback play extremely important
roles for humans to perceive, understand and manipulate the
world [6]. Due to its importance, haptic understanding has now
been extensively used for a wide variety of fields, such as man-
ufacturing industry, robotics [7]-[9], and so on. See [10] for
a detailed survey of the recent work.
Regarding haptic object recognition, a popular trend appears
that advanced machine learning technology becomes the main
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tool to distinguish objects with different physical proper-
ties. Schneider er al. [11] developed a naive Bayes method
for bag-of-words feature which was obtained by grasp-
ing different parts of the rigid object. Such features were
extended by introducing novel descriptors in [12]. The nearest
neighborhood method, support vector machine [13], extreme
learning machines [14], [15], Gaussian process [16], non-
parametric Bayes learning method [17] had been developed
for haptic material recognition. For the deformable object,
Chitta et al. [18] developed a simple feature to identify
the internal state of bottles. Drimus et al. [19] developed a
new haptic sensor and contributed a haptic object recogni-
tion dataset. Soh and Demiris [20] utilized the spatio-temporal
online recursive kernel Gaussian process to extract the hap-
tic feature and developed an incremental recognition method.
Navarro et al. [21] and Schmitz et al. [22] used the single-layer
and deep learning method for object recognition. Recently,
Madry et al. [23] developed a spatio-temporal unsupervised
feature learning method for haptic object recognition and
achieved very excellent results on tasks of grasp stability
analysis and haptic object recognition. Spiers et al. [24]
implemented object identification and feature extraction tech-
niques on data acquired during a single, unplanned grasp
with a simple, underactuated robot hand equipped with
inexpensive barometric pressure sensors. In addition, one
of our previous work utilized the sparse coding method
to address the object recognition problem using multiple
fingers [25].

On the other hand, the haptic classification is highly related
to the material recognition problem. For example, classify-
ing a surface as foam implies the presence of some haptic
properties, such as absorbent, bumpy, compressible, and soft.
However, many exceptions exist. For example, different bot-
tle surfaces have vastly different hardness properties: a glass
bottle is hard but an aluminum bottle is soft. Consequently,
haptic understanding goes beyond simply identifying object
materials and exhibits great challenges.

Since many properties perceived by the haptic sensors can
be characterized by adjectives such as hard, soft, smooth, and
S0 on, it is reasonable to develop a set of haptic adjectives
for the haptic understanding. Griffith et al. [26] demonstrated
that a rich and diverse haptic measurement system that mea-
sured temperature, compliance, roughness, and friction was
key to accurately discerning between haptic adjectives such
as sticky and rough. Chu et al. [27] detailed the collection
of haptic classification datasets and concentrated on classify-
ing objects with binary haptic adjectives. This paper relied
on hand-crafted features for haptic classification. Recently,
Gao et al. [28] proposed a deep learning method of classifying
surfaces with haptic adjectives from both visual and physical
interaction data. Orhan et al. [29] proposed a framework that
conceptualized adjectives and nouns as separate categories that
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Fig. 1.  Some representative examples which are adopted from PHAC-2
dataset [27]. The red text indicates the name of the object and the follow-
ing black texts show the corresponding haptic adjectives. Please note that the
images are just used for visualization illustration but not for algorithm devel-
opment. From such examples we make two observations: 1) the adjective
recognition is indeed a multilabel classification problem and 2) the absorbent
usually co-occurs with compressible; cool usually co-occurs with smooth and
solid. On the contrary, hard never co-occurs with soft. Such correlation will
be further analyzed in this paper and we will exploit such relation to improve
the haptic understanding performance.

were linked to and interact with each other. They demonstrated
how those co-learned concepts might be useful for a cognitive
robot.

As we have analyzed, objects usually exhibit multiple
physical properties [30], [31]. Therefore, the haptic adjective
classification can be formulated as a multilabel classification
problem. See Fig. 1 for some examples. However, existing
work such as [27] and [28] decomposed the problem into a
set of independent binary classification problems. That is to
say, each object is described by a set of multiple binary labels
corresponding to the existence of absence of each of the haptic
adjectives. Such a strategy totally neglected the interdepen-
dencies among multiple binary prediction tasks. For example,
absorbent usually co-occurs with compressible; cool usually
co-occurs with smooth and solid. On the contrary, hard never
co-occurs with soft. Such relations cannot be exploited by the
above simple strategy.

Different from the conventional multiclass problems where
each sample should be mapped to a single class label,
multilabel classification needs to map each sample to typically
a few interdependent class labels in a relatively large output
space. The goal of multilabel classification is therefore to dis-
cover the underlying label correlation structure to improve
the classification performance. However, existing work on
multilabel classification is mainly concentrated in the applica-
tions of image, video, and text. In [32], an image is typically
associated with multiple labels, and its visual representation
reflects the combination of the involved labels. It is observed
that each label corresponds to certain local patch in the image.
Therefore, the entire image representation can be decomposed
into a set of local label representations corresponding to the
labels associated with an image. However, the haptic signal
does not exhibit such properties. That is to say, it is diffi-
cult, if impossible, to segment the haptic signal according to
different labels.

In this paper, we exploit the intrinsic relation among dif-
ferent adjective labels and develop a novel dictionary learning
method which is improved by introducing the structured output
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association information. Such a method makes use of the label
correlation information and is more suitable for the multilabel
haptic understanding task. The main contributions are listed
as follows.

1) We establish a novel structured output-associated dictio-
nary learning (SO-DL) framework for multilabel haptic
adjective classification.

2) We develop two iterative algorithms to solve the dic-
tionary learning and classifier design problems, respec-
tively.

3) We perform extensive experimental validations on the
public available haptic sequence dataset and show the
advantages of the proposed method.

The rest of this paper is organized as follows. In Section II,
we review some related works and point out the uniqueness
of this paper. Section III presents the problem formulation
and the objective functions of the proposed SO-DL method.
In Section IV, we introduce the optimization algorithm. The
classifier design is presented in Section V and the experimental
results are given in Section VI

Notations: We use the capital X to represent the matrix and
lowercase x to represent the vector. For a vector x, we use
x (i) to denote its ith element. We will use various vector and
matrix norms, here are the notations we use: ||x||; and [|x||2
represent the 1-norm and 2-norm of the vector x, respectively.
[|X]||F is the Froubenius norm, and ||X||; 1 is calculated by the
absolute values of all elements in X.

II. RELATED WORK

Since the core contribution of this paper is a new dictionary
learning method for haptic understanding, we give a discus-
sion to illustrate the difference between existing related work
and ours.

As we have mentioned above, the haptic adjective
understanding problem is intrinsically a multilabel clas-
sification problem. There exist some representative work
which used sparse coding and dictionary learning method
to solve multilabel classification problem. For example,
Wang et al. [33] developed a multilabel sparse coding frame-
work for feature extraction and classification within the context
of automatic image annotation. Cai et al. [34] proposed a
structured sparsity-inducing norm regularization to incorporate
the relational graph information into multilabel classifica-
tion model and imposed the correlated classes to share the
common space, such that the input data relevant to both
classes would be learned jointly. Jing et al. [35] developed
a multilabel dictionary learning with label consistency regu-
larization and partial-identical label embedding, which con-
ducted multilabel dictionary learning and partial-identical
label embedding simultaneously. However, to the best of our
knowledge, the idea about SO-DL has never been addressed.
Furthermore, we notice that there is extensive research on
structured sparse coding and dictionary learning [36], [37].
However, such work focused on imposing structured informa-
tion on the coding vectors or dictionary atoms, but did not
consider the structured information in the output vectors. In
this sense, the model proposed in this paper is novel.

The idea using sparse coding for haptic object recognition
was reported in our previous work [25], [38]. However, there
exist significant differences between them and this paper.

1) Both [25] and [38] regarded all of the training samples

as the dictionary and did not investigate the dictionary
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Fig. 2. Two representative haptic sequences which are adopted from PHAC-2
dataset [27]. It is obvious that they exhibit different characteristics and lengths.

learning problem. This limits the application in more
practical scenarios. In this paper, we focus on the
dictionary learning problem for haptic understanding.

2) Both [25] and [38] addressed the single-label object

recognition problem, while this paper investigates the
more practical multilabel haptic adjective classification
problem. To tackle such a challenging problem, we
propose a novel dictionary learning model which incor-
porates the structured output association information.

To summarize, the work in this paper differs with our
previous work significantly in aspects of the theoretic model
and classification applications.

In addition to the spare coding and dictionary learning, we
notice that deep learning technology has become an effec-
tive strategy to tackle haptic signals [28]. The most great
advantages of deep learning is that the feature can be auto-
matically learned. However, this requires more haptic training
data which is difficult to collect in practice.

III. PROBLEM FORMULATION

For conveniens, we denote the measurable space of
interested haptic signals by S. Some representative examples
are shown in Fig. 2. Given a set of C adjective labels and a set
of N training sequences {S,-}ﬁ-V: | € S. The element of the label
vector y; € RE corresponding to the ith sample is defined as

+1 If label c is associated with sample S;

yile) = { —1  othewise (1)

for c = 1,2,...,C. The goal in multilabel haptic adjective
classification is to label an unseen haptic sample § € S with
the subset of relevant adjective labels from the prespecified
adjective set. A haptic sample can be labeled with any of
the 2€ possible subsets. The main challenge, therefore, lies
in optimizing over this exponentially large label space subject
to label correlations.

Since the haptic sequences do not lie in the Euclidean
space [25], [39], we cannot adopt the conventional sparse
coding method which requires the linear reconstruction
assumption [40]. A popular method to deal with this problem
is to adopt the kernel trick on the dictionary learning. By
using a suitably designed kernel, the linear sparse coding
can be extended to the nonlinear case [41], [42]. To this
end, we denote the reproducing Kernel Hilbert space of
functions on S as Hg, whose dimension is denoted as D,
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which may be infinite. Any positive-definite kernel function
k(-,-) corresponds to an inner product in a latent Hilbert
space and induces a latent feature map which is denoted by
¢(-) : § - Hg from the original input space to this feature
space. Please note that ¢(-) is not required to be explicitly
represented and we only concern the concrete form about
the kernel function «(S;,S;) = goT(S,-)go(Sj), which will be
detailed in experiment section.

The task of haptic dictionary learning aims to obtain a com-
pact dictionary D = [dy, ...,dx] € RP*X, where K < N is
the size of the dictionary, and dy, € Hg for k = 1,2,..., K.
Such a dictionary should effectively summarize the whole
training set {S,~}f.v= | and provides a good basis for sparse coding
in the implicit feature space.

By denoting ¢(S) = [¢(S1),...,9(SN)] € RPN we
formulate the following kernel dictionary learning problem:

i S) — DX||? X
%}}} lo(S) Iz + el X|1,1
st. |ldell, =1 for k=1,2,....K )

where X = [x1,x2,...,xn] € REXN is the sparse coding
matrix and « is used to control the sparsity.

However, the optimization problem in (2) cannot be directly
solved since the mapping ¢(-) is not explicitly represented.
Fortunately, the kernel trick provides an effective method to
avoid dealing with the mapping ¢(-) [43], [44]. However,
the dictionary learning problem is still nontrivial since we
have to deal with the dictionary atoms dj which lies in
the implicit feature space. For general cases of kernels,
Harandi and Salzmann [44] and Van Nguyen et al. [41] utilized
the Representer Theorem, which indicates that the dictionary
D can be represented by

D = ¢(S)A 3)

where A = [aj,a,...,ak] € RV*K s the reconstruction
matrix. This means that the dictionary atoms can be linearly
reconstructed by the training samples in the feature space.
Furthermore, the constraint condition on the dictionary atoms
[ldi|l2 = 1 is in fact ||@(S)ar|lo = 1, which can be equiv-
alently transformed as a!Kssax = 1, where Kgg € RV*VN
is the kernel matrix over all of the training samples. The
(i, ))th element of Kgg is defined as x(S;, S;) = (pT(Si)goT(Sj).
Therefore, we can reformulate the kernel dictionary learning
problem as

min [l¢(S) — ¢(SAXIF + olIXI]1,1
s.t. al Kssar = 1. 4)

By this formulation we observe that the original data matrix
@(S) € RP*N is compressed as a reduced dictionary D =
@(S)A € RP*K and each sample S; € S is represented as
K-dimensional sparse vector x; € RX. The optimization model
in (4) provides a great advantage since it does not search the
dictionary atoms in the feature space, but only calculates the
coefficient matrix A. Therefore, this formulation can be used
for any type of kernel functions.

After getting the sparse code x; for the original sam-
ple S;, we can use conventional classifier for classification.
However, such a method exists an obvious disadvantage that
the dictionary learning stage and the classifier design stage are
independent. This limits the performance of the dictionary. A
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better solution is to jointly learn the dictionary and the clas-
sifier, i.e., introducing the discriminative capability into the
dictionary learning.

One straightforward approach for multilabel classification
is to decompose the multilabel learning problem into a set of
independent binary classification problems. According to this
idea, we define a new label vector z. € RN for each label
c=1,2,...,C, as

. 1 i(c

=0={11 3§

and formulate the following C independent supervised dictio-
nary learning problem:

+1 (5)

min l(S) P(SAXNF + allXclly
CrAcsWe 2
+ Bl —wIXe | + v lwel3
st al Kssacy =1 (6)
for c = 1,2,...,C. In the above equation, A, € RN*K and

X. € REXN are the dictionary coefficient matrix and cod-
ing matrix for the cth task, respectively, and w. € RX is the
classifier coefficient vector. The parameters 8 and y are used
to control the importance of the corresponding regularization
terms.

However, the above approach considers each adjective as
an independent class task and the multilabel correlations
are neglected. It is well known that the task correlations
are helpful for the prediction. Therefore we can require the
shared common dictionary but design different classifiers for
each adjective classification task. This leads to the following
optimization problem:

min () — p©AXIE + al|XI,1

A, We
c c
+ B e = wIx[3+7 Y Iwel3
c=1 c=1

s.t. af Kssay = 1 (7)

forc=1,2,...,C and w. € RX is the classifier vector.

Nevertheless, the above formulation does not explicitly
incorporate the output association information. In fact, the
output components can be considered as auxiliary features
and used to complement the more standard input features. We
assume that the output y;(c) is related to all the other outputs
Yi—e which is defined as

Yie = i), ooyl — Doy + 1), . yi(O]"

and we may minimize the discriminative error with the
linear form

—vlyi e (8)

where u, € RX and v, € RE™! are the classifier coefficient
vectors for the cth classification task.

By incorporating the above error term into the original
dictionary learning objective function (4), we formulate the
proposed SO-DL problem as

i S) — p(S)AX||? X
AI)}anV lo®S) — p(SAX |z + all Xl 1

o C N
+ B33 ie) —ulxi — Iy, )

c=1 i=1

+ v (101 + V1)
S.t. a]{Kssak =1 )

yi(c) —ulx;
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Fig. 3. Coding and labeling principle illustration. The haptic sample is
coded as a K-dimensional vector and a classifier could be developed using
such a coding vector. The red lines indicate that the structured output asso-
ciation information can be exploited to improve the multilabel classification
performance.

where U = [uj,uz,...,uc] € REXC and Vv =

Vi, va, ..., vc]l € REDXC are classifier parameter matrices
which represent the relationship between inputs and outputs.

In Fig. 3, we give a schematic plot to show the
whole procedure of the joint coding and structured output
labeling.

Remark 1: In (8), we only consider the linear dependence
relation between the inputs and outputs. To better charac-
terize the complicated relation between them, we can resort
to the kernel function to design the nonlinear discriminative
regularization term

yi(©) —ulpee) — vy (i) (10)

or even

¥i(©) —ulp(xi, i) (11)
where ¢ (-) and ¥ (-) are some nonlinear mapping functions
which can be explicitly designed by the user or be implicitly
represented by the suitably defined kernel functions. Adopting
this strategy helps us to obtain better representation of the
input—output relation but introduces more tuning parameters
and complicates the solving procedure. In this paper, we find
the simple linear dependence relation in (8) can work well in
our multilabel haptic understanding tasks.

IV. OPTIMIZATION ALGORITHM

The optimization problem in (9) is obviously nonconvex
and nonsmooth. We adopt the alternative optimization method
to solve it. The algorithm can be divided into the following
stages. For conveniences, we use the superscript ¢ to represent
the solutions at the rth iteration.

A. Calculating the Sparse Coding Vectors

This step updates the coding vectors X =+, given the values
of AD, U, and V., Please note that each column of X can
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be calculated separately, and therefore, the problem reduces to

2
2+Oé||xi||1

C
OGRS
c=1

(’)Tyl —.- By denoting y(t) =

we can rewrite the third term in the above

min H‘P(Si) —p(SAVx;

) a2

where y(t) =
NORNG)
[ylz Yojsee-
equation as ,8||y(l) UPx;]|3.

As we have |[|p(S;) — (p(S)A(t)xlllz = o1 (SHe(S) —
2ks APx;+xT A KAV, and |50 —U x|} = 50750 -

1
Al(t) UPx; +xTUDTUDTx;, we can expand (12) as
n}in —2(k£iA(l) + ,Bﬁ,@TU(t))xi

yile) — v
A(’)]T

+ xiT(A(’)TKssA(’) + ﬁU(’)U(’)T)xi +allxill; - (13)

where ks, = o7 (S)¢(S) is the ith column of Kgg.

This problem can be easily solved using any efficient /;
optimization algorithm such as feature-sign search [43] or
alternating direction method of multipliers [45]. Also, we can
employ popular sparse solver software such as SPAMS [46]
to solve this problem.

Using the above procedure for i = 1,2, ..., N, we can get
the updated values of XU+ = [xYH), . (D5,

Xy

B. Calculating the Dictionary Atoms

This step update the dictionary coefficient matrix. At the
(t + Dth iteration, we are given XUTD, U® and V®. The
optimization problem reduces to

. [o0—oromres |

s.t. al Kssar = 1. (14)

By defining A = X(l+1)T(X(t+1)X(t+1)T)—1 and

ay
a](:H) _

_T -
@ Kssay

where ay, is the kth column of A, we can get the updated
values of A+ = [a(lH']) (t+1)].

seee Ay

C. Calculating the Classifier Parameters

This step updates the classifiers parameters U and V. At the
(t+ Dth iteration, we are given XU*1 and A1 Please note
that each column of U and V can be calculated separately, and
therefore, the problem reduces to

min Z(y () —

2
T (t+1) T
vcyi,—'c>

+ 7 (I3 +vel3).  a9)
Denoting u, = [uCT vZ] and x(t+1) [x ,(t—H)T _V,-T,T]T we
can get
min ﬂZ(y @ -a= )ty a6
u,

c

which admits the following solution:

{ﬂX(t+1) (I+1)T+y11<+c-1} (ﬂX(’“)( ))
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Algorithm 1 SO-DL

Input: Data set {S;} fori=1,2,---
K, the parameters «, B, y

Output: Solutions X € RKN A ¢ RV*K U e RK*C and
V e R(CC-DxC.

, N, the size of dictionary

1: while Not convergent do

2. Fix A, U, V and update X according to Section IV.A.
3:  Fix X, U, V and update A according to Section IV.B.
4. Fix A, X and update U, V according to Section IV.C.
5. end while

= (1) .

where X [ (H‘l) —(H‘l) —](\;‘f‘l)] y _
i), ....yn()]; and Ixc—1 is the (K+C— ) x(K+C— 1)
identity matrix.

Furthermore, we can easily extract the first K rows of @, as

ugtﬂ) and other C — 1 rows of u, as vEtH).
Using the above procedure for ¢ = 1,2,...,C, we can
get the updated values of Uutth = [uglﬂ), . E-'H)] and

y+h — v (f+1) (t+1)]

D. Algorithm Summarization

With the above updating rules, the proposed algorithm is
summarized in Algorithm 1. The convergent condition can be
triggered when the change of the objective function is smaller
than a prescribed tolerant error, or the prescribed maximum
iteration number is achieved. In this paper, we adopt the lat-
ter strategy and the maximum iteration number is set to 30.
The initial value of A is set as [Ix, Ov—x)xx]” - This implies
that we use the first K samples in the training sample set to
construct the initial dictionary.

V. CLASSIFIER DESIGN

The above learning procedure provides us the solutions
which are denoted as A*, U*, and V*. Then we should use
them to design the classifier. Differently from previous super-
vised dictionary learning method which did not consider the
output association, we should carefully design an algorithm for
the classifier to preserve the output-associative information.

For a test sample S € S, we denote its label vector as
I € {—1,+1}€ which should be determined. We use y € R
as the relaxed label vector and solve the following joint coding
and labeling problem:

min (S - so(S)A*xHF+allxII1+ﬁZ (e — utTx)?
c=1

7)

where J. =y(c) —viTy_,.

This problem is also nonconvex, and therefore, we resort
the alternative optimization method. The iterations are divided
into the following stages. For convenience, we also use the
superscript ¢ to indicate the iteration number.

1) Update x as

P(S)A x|

+ allxl + B Z(“’)

xD = argmin || (S) —
X

)2 (18)
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where $ = y©(¢c) —v*Ty". This problem is similar to
the coding problem in Section IV-A and can be solved
efficiently.

2) Update y as

c
2
y*D = argmin Z(&C — u:fo(’“)) . (19)

Y c=1

Note 3. can be represented as ¥:ly, where

Vi = A, . vEe = 1), Lvie + D, .., vE O]
Therefore the objective function in (19) can be
represented as

” V*Ty _ Ty +D ”2
2

where V' = [}, ...,75] and U" = [}, ..., &%]. The
solution can thus be obtained as

yHD (V*V*T>_1V*U*Tx(’+1).

In practice, we follow the suggestions given by [47] to ini-
tialize the above optimization problem using prediction given
by classifier trained on independent outputs. This strategy
significantly improves the convergence speed compared to
random initialization. In our experiment, after at most four
iterations we can get the converged solution y*. Finally, we
set the refined final label vector I according to

I(c) = sign(y*(c))
forc=1,2,...,C.

VI. EXPERIMENTAL RESULTS
A. Data Description and Experimental Setting

We demonstrate our approach on the Penn Haptic Adjective
Corpus 2 (PHAC-2) dataset, which was originally developed
in [27]. The PHAC-2 dataset contains haptic signals of 60
household objects. Each object is explored by a pair of
SynTouch biomimetic haptic sensors (BioTacs), which were
mounted to the gripper of a Willow Garage Personal Robot2.
Each object was felt with four exploratory procedures. The
BioTac sensor generates five types of signals: 1) low-frequency
fluid pressure; 2) high-frequency fluid vibrations; 3) core tem-
perature; 4) core temperature change; and 5) 19 electrode
impedance which are spatially distributed across the sensor.
Although the joint positions and gripper velocity and accel-
eration are available, we concentrate on classifying the haptic
signals using the electrode impedances. Therefore, we con-
catenate the electrode impedances data from the two BioTac
sensors to get d = 19 x 2 = 38-D haptic sequence sig-
nals (see Fig. 2 for some representative haptic sequences).
For each object, ten trials of each exploratory procedures
were performed and 600 haptic sample sequences were
obtained.

Each object is described with a set of 24 binary labels,
corresponding to the existence or absence of each of the 24
haptic adjectives (e.g., hard or soft). The link information
is shown in Fig. 4 and the calculated correlation informa-
tion is detailed in Fig. 5, which shows that there indeed
exists obvious correlation between some adjectives, such as
solid-hard, compressible-squishy, and soft-compressible. For
the three adjectives nice, sticky, and unpleasant, which exhibit
only one positive object instance, it is impossible to construct
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the positive training and testing sets. Therefore, we simply
delete such three ones. As a result, there are 21 possible adjec-
tive labels and the average number of adjective labels for each
sample is 4.2. In Fig. 6, we show the label distribution of hap-
tic adjectives. It shows that smooth, solid, and squishy are the
most three popular adjectives.

The performance evaluation of multilabel learning is very
different from that of single-label classification and we use the
popular Hamming loss to evaluate the classification score [48].
For the ith testing sample, we use G; as the set of ground-truth
labels and R; as the adjective label set of the algorithm output.
Then the score is calculated as

1
score(i) = 1 — EIQ[ O Ril

where © stands for the symmetric difference between two
sets and |-| calculates the number of elements in the set.
The symmetric difference is the set of elements which
are in either of the sets and not in their intersection.
For example, if G; = {smooth, rough, cool, squishy} and
Ri = {smooth, solid, squishy}, then we have G, © R; =
{rough, cool, solid}. If G; = R,;, then we have G, O R; = I
and therefore the score is 1. Otherwise, only when one of G;
and R; is a full set and the other one is an empty set, we can
obtain the zero score. The overall performance is evaluated by
averaged score over all of the testing samples.

B. Haptic Sequence Representation

At each time step, we collect the haptic data from the d
sensor cells. Since we want to utilize the dynamic features
which seek to model the way the entire haptic signal changes
over time, we represent the dynamic haptic sequence S; € S as

(20)

Si = [Si,la 8i2, .- ,Si,t,']

where §;; € RY for r = 1,2, ..., t;, and ¢t; is the number of
the sampled time instants for this sequence. The lengths are
different from sequence to sequence.

A popular comparison measurement of time sequences is
dynamic time warping (DTW) distance, which was also used
for haptic sequence comparison [19], [25]. However, it is well
known that DTW is not a true metric and it is difficult to con-
struct the positive definite kernel from DTW distance [49].
In some previous work such as [25] and [49], some extra
modifications were always required to guarantee the positive-
definiteness of the DTW kernel matrix. Such a processing
introduced unexpected effects for the final performance. To
avoid this problem, we resort the global alignment (GA) ker-
nel which was proposed in [50]. The details are introduced as
follows.

Consider two haptic sequences S; = (s 1, ...,8;;) and §; =
(1, s Sj4;) of lengths #; and ¢;, respectively. We denote an
alignment 7 to be a pair of increasing integral vectors (7, 77;)
of length || such that 1 = m;(1) < ---m(jmw|) = t; and
I =mj(1) < ---m(|m|) = ¢, with unitary increments and no
simultaneous repetitions. Since the two haptic sequences have
t;+t; points and they are matched at least at one point of time,
we have || <f; +1 — 1.

We define alignment cost of s; and s; under the align-

b
ment sFrategy woas Cj = lzlll.p(s,-,m(,),sj,ﬂj(,)), where
¥ (-, -) is used to denote the local divergence that measures
the discrepancy between the two vectors. According to the

suggestions in [50], we use the following local divergence
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Fig. 5. Correlation of multilabel adjectives. From this figure we clearly find that solid is highly related to hard; compressible is rather related to squishy
and soft. All of them are consistent to our intuitive knowledge.

U@, v) = (1/202)|ju—v| 2 +log(2 — e lIH=Y1"/20%1) "where  C. Performance Comparison
o is a parameter which is empirically set to 10.

The GA kernel assumes that the minimum value of align-
ments may be sensitive to peculiarities of the time sequences
and intends to take advantage of all alignments weighted expo-
nentially. It is defined as the sum of exponentiated and sign

To show the advantages of the proposed method, we make

a fair comparison with the following classifiers.
1) Separate k-Nearest Neighbor Method: It decomposes the
original problem into 21 separate binary classification
problems (one per adjective) and uses the conventional

changed costs of the individual alignments k-nearest neighbor (k-NN) method with the GA kernel-
induced distance to determine whether the adjective
K (Si.8;) = Z e~ Gt (21) emerges or not. This method does not consider the
7el (1,17 correlations of labels and serves as a baseline. In our
experiment we set k = 1 because we find increasing the

where I1(#;, t;) denotes the set of all alignments between two value of k may deteriorate the performance.
time sequences of length #; and #. It has been argued that 2) Multilabel k-NN Method [48]: For each test sample, it
k runs over the whole spectrum of the costs and gives rise first identifies its k-NNs using the GA kernel-induced
to a smoother measure than the minimum of the costs, i.e., distance in the training set. After that, based on sta-
the DTW distance. It has also been shown that this kernel is tistical information gained from the label sets of these
positive definite. neighboring instances, i.e., the number of neighboring
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TABLE I
METHOD COMPARISON

Method S-kNN ML-kNN S-DL C-DL SO-DL
Training X X v v v
Task correlation X X X v v
Output correlation X v X X v

instances belonging to each possible class, maximum a
posteriori principle is utilized to determine the label set
for the unseen instance. In this paper, we set k = 5
because the experimental results show that larger k£ does
not result in better performance.

3) Separate Dictionary Learning Method: This method
solves 21 separate optimization problems in (6) to obtain
the dictionaries and classifiers. Obviously, the label
correlation is not considered in this method.

4) Common Dictionary Learning Method: This method
solves the optimization problem in (7) which learns
a common dictionary and separate classifier for each
adjective. Please note this method uses a shared dic-
tionary to construct the connections of all the clas-
sification tasks but still does not consider the label
correlation.

5) Structured Output-Associated Dictionary Learning
Method: This method is developed in this paper and
solves the optimization problem in (9) and explicitly
incorporates the effect of label correlations.

In Table I we give the information to indicate whether some
method requires training stage, whether it considers the task
correlation and whether it exploits the label correlation. The
task correlation of common dictionary learning (C-DL) and
SO-DL is exploited by utilizing the common shared dictio-
nary, and the label correlation of SO-DL is exploited by the
introduced output association information.

For separate dictionary learning (S-DL), C-DL, and SO-DL,
we set the dictionary size K as the 60% of the number of

1 T T T T
(I s-kNN IML-kNN [S-DL [s-CL[]sO-DL] - M
08" _ [] .
0.6] [T
2
(o)
O
%)
0.4
0.2F &
0
5:5 6:4 7:3 8:2 9:1
Train/Test splits
Fig. 7. Performance score for the five train/test splits.

training samples and extensively tune other parameters to get
the best results. In Section VI-D, we will show the parameters’
effect on the performance.

We partition the 60 objects into five split cases: train-
ing/testing = 5/5, 6/4, 7/3, 8/2, and 9/1. For each split case, the
objects are randomly split as training set and testing set for
ten trials, and the averaged recognition scores are reported.
Similar to [27], we do not allow the same object to appear
in both the train and test split. This permits us to investigate
the capability of the algorithm to deal with new or unseen
objects. Fig. 7 shows the performance of the five cases. The
proposed SO-DL method consistently outperforms the other
methods. The multilabel k-NN (ML-k-NN) method, which also
incorporates the label correlation information, performs better
than separate k-NN (S-k-NN) and is competitive to S-DL and
C-DL, but worse than SO-DL. From those results, we make
the following observations.

1) S-k-NN performs worse than all of the other meth-

ods. The reason is obvious: without considering the
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TABLE 1T
REPRESENTATIVE RESULTS
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Method

white foam

toilet paper

glass bottle

aluminum block

Ground-Truth

{absorbent, porous, compressible,
soft, springy, squishy }

{absorbent, compressible, fuzzy
soft, squishy }

{cool, hard, metallic
slippery, smooth, solid}

{cool, metallic, slippery
smooth, solid}

S-kNN {compressible, fuzzy {absorbent, compressible, {hard, {metallic, smooth
soft, scratchy, squishy } soft, textured } smooth, solid} solid, thick}
ML-KNN {absorbent, compressible, {absorbent, compressible, {hard, metallic {cool, hard, metallic,
soft, solid, springy, squishy } soft, squishy } slippery, smooth, solid} smooth, solid}
S-DL {compressible, fuzzy, {absorbent, compressible, fuzzy {hard, { metallic, slippery
soft, springy, squishy, textured } soft, squishy, textured } slippery, smooth, solid} smooth, solid }
C-DL {absorbent, compressible, {absorbent, compressible, fuzzy {hard, slippery {metallic, slippery
springy, squishy, thick} soft} smooth, solid, squishy } smooth, solid}
SO-DL {absorbent, porous, compressible, {absorbent, compressible, {cool, hard, metallic {cool, hard, metallic, slippery

soft, springy, squishy }

soft, squishy }

slippery, smooth, solid}

smooth, solid}

correlations of multiple adjectives, it is very difficult for
such a method to get satisfactory performance over all
of the adjectives. Similarly, S-DL performs better than
S-k-NN by a very small margin.

2) ML-k-NN, which explicitly incorporates the correlation
information of adjectives, performs better than S-k-NN
and S-DL. On the other hand, we find C-DL, which just
uses the shared common dictionary but does not incor-
porate the output correlation, obtains similar results with
ML-k-NN in most cases. The possible reason is that the
sparse coding strategy introduces more discriminative
information. Please note ML-k-NN is just a lazy classi-
fier and does not exploit the discriminative information.
From such a comparison we can observe the power of
dictionary learning and sparse coding.

3) The proposed SO-DL method performs better than all of
the other methods for all cases. The gained improvement
originates from two aspects: a) the discriminative capa-
bility introduced by the dictionary learning and sparse
coding and b) the correlation information of the adjective
labels.

4) For the case of 5/5 split, the performance gained by
SO-DL is small, while for other cases, the improvement
is significant. This is partially due to the fact that the cor-
relation information can be exploited from more training
samples.

In Table II we list some representative results using different

methods. In the following, we give some explanations.

For the sample of white foam. The adjective porous is dif-
ficult to be perceived. However, since porous exhibits some
correlations with absorbent, compressible, soft, and squishy,
our method successful finds it. ML-k-NN, though adopts the
multilabel correlation information, fails to find it. The possible
reason is that the correlation of porous with other adjec-
tives are not strong enough for ML-k-NN to work. This
example also shows that the proposed method exploits more
information than ML-k-NN.

For the sample of roilet paper, S-k-NN and S-DL falsely
find textured. Such mistakes do not occur with ML-k-NN and
SO-DL since the label correlation is fully exploited. However,
the adjective fuzzy, though can be found by S-DL and S-CL,
cannot be found by ML-k-NN and SO-DL. The reason is that
fuzzy exhibits weak correlation with other adjectives and there-
fore the correlation information in ML-k-NN and SO-DL plays
very little role.

Both glass bottle and aluminum block exhibit the property
cool, which cannot found by S-k-NN, S-DL, and S-CL. Using

Fig. 8.

Sensitivity of « and f.

our method, though we do not use the temperature information,
we can still accurately find cool. The main reason is that cool
is related to the adjectives hard, solid, and smooth, and our
method can successful exploit such relations to get correct
results.

It is embarrassed to admit that the label correlation does
not always play positive role. One example is that both ML-k-
NN and SO-DL falsely find hard with aluminium block. The
reason is that hard is closely related with smooth and solid,
therefore the algorithm would like to assign hard adjective to
the aluminium block, which exhibits the properties of smooth
and solid. It is a pity that hard is not included in the ground-
truth label set because the annotators feel it is not hard enough.

D. Parameter Sensitivity Analysis

In our model (9), there are several regularization parameters
o, B, and y. All of them are of physical meanings, and there-
fore, it is not difficult to tune them for better performance. To
analyze the effects of « and 8, we set y = 107> and vary the
values of  and B from 10~* to 10%. The results are shown in
Fig. 8. Those results show that the proposed algorithm works
well when the parameter « is in the interval [10_4, 10_3].
When B is too large, the reconstruction error term is attenuated
and the obtained coding vector cannot reflect the characteris-
tics of the original haptic samples. On the contrary, when S is
too small, the role of discriminative classifier becomes weak.
Therefore, a properly designed classifier term indeed plays an
important role in haptic dictionary learning.

Finally, we fix & = 0.001 and B = 0.01 and vary the ratio
K/N for the five split cases, where N is the number of the
training samples, and record the scores in Fig. 9, which shows
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Fig. 9. Sensitivity of K for five train/test splits.

that increasing the value of K improves the performance, but
the curves almost reach the plateau when the ratio is larger
than 0.6. This means that the performance is not sensible to
the dictionary size, partially due to the merits of the introduced
discriminative learning term.

VII. CONCLUSION

Developing a set of haptic adjectives provides a bridge to
understand haptic sense since many properties perceived by
the haptic sensors can be characterized by adjectives. However,
the adjectives perceived by the haptic sensors exhibit strong
and complicated correlations, which provide us challenge and
opportunities for cognitive understanding of haptic informa-
tion. In this paper, we formulate the haptic understanding as a
multilabel classification problem and exploit the intrinsic rela-
tion between different adjective labels by developing a novel
dictionary learning method which is improved by introducing
the structured output association information. Such a method
makes use of the label correlation information and is more
suitable for the multilabel haptic understanding task. To solve
this problem, we develop two iterative algorithms for dictio-
nary learning and classifier design, respectively. Finally, we
analyze the adjective correlation on the public available haptic
sequence dataset PHAC-2 and perform extensive experimental
validations to show the advantages of the proposed method.

By this paper we make the following findings.

1) Although haptic sensing is complicated and subtle, it can
be well characterized by many adjectives. In practice,
haptic adjectives serve as powerful tools to represent
the semantic haptic information.

2) By a detailed analysis on the adjectives in the extensive
PHAC-2 dataset, we confirm that there exists a lot of
correlations among the haptic adjectives. This is also
consistent with the human’s intuition.

3) Exploiting the correlation of haptic adjectives indeed
improves the haptic understanding performance. A rep-
resentative example is that we can find the cool property
without the temperature information. Such a synesthesia
can be obtained by correlations of haptic adjectives.

This paper provides an effective strategy for cognitive hap-
tic understanding. In addition, although our focus is on haptic
understanding, the described problem framework is common
in the automation community. The algorithm described in
this paper can therefore work with other multilabel classifica-
tion problems. In practical scenarios, the actuator saturation
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often occurs and produces extra effects on the haptic sig-
nals [51]-[53]. This provides great challenges on the haptic
understanding and remains our future work.
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