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1. Introduction

In recent years, the widespreading
applications of intelligent robots, human–
machine interaction, and smart prosthetics
in complex environments have created
an urgent need for tactile sensing.[1–4]

Among the tactile information, macro-
scopic contour, millimeter-scale pattern,
and micron-scale texture tend to determine
the fundamental features of object
appearance.[5–9] By utilizing tactile recep-
tors to perceive the surface features of
objects, a human can accurately identify
surface defects and differentiate between
various types of objects. This enhances
their ability to gain a comprehensive
understanding of their environment, facili-
tating decision-making and adaptability.
Such advanced capabilities are also
critical for robots to operate effectively in
complex and dynamic environments.[10–12]

Therefore, it is significant to promote a tac-
tile sensor capable of perception and recognition of the surface
features of objects.

One universal method for identifying surface contours
through touch is to analyze the distribution of static contact
forces detected by a sensor array.[13–16] That is, Oh et al. reported
a flexible thin-film transistor array with a 100 μm pitch, which
achieves pressure distribution images with a high spatiotemporal
resolution of 500 μm.[17] However, using sensor arrays to detect
edges usually requires a large number of tiny-sized sensor cells
to enhance resolution, which leads to the creation of complex
acquisition circuits to mitigate potential signal cross-talk issues.
These limitations impede the tactile perception of intricate sur-
face patterns by sensor arrays that rely on static force sensing.

Drawing inspiration from the exploratory movements of
humans, sliding perception methods offer an alternative
approach to perceiving object features. One such approach
involves mimicking the sliding motion of a finger across an
object’s surface using a dynamic tactile sensor. That is, Song
et al. developed a flexible triboelectric sensor that utilizes sliding
signals to classify textures.[18] Park et al., created an electronic
skin based on polyvinylidene fluoride piezoelectric film, which
can distinguish surface textures with varying roughness levels
through sliding.[19] The dynamic tactile sensor is similar to
the fast-adapting mechanoreceptors in human skin, which are
particularly responsive to interactive vibrations caused by surface
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Perceiving surface characteristics through tactile interaction typically requires
high-resolution devices or precise spatial scanning to record and analyze a
significant amount of information. However, most available tactile sensors
require complicated technological processes, redundant layouts, and data
acquisition circuits, which limits their ability to provide a real-time static per-
ception and feedback for potential applications such as robotic manipulation.
Drawing inspiration from the sliding tactile (ST) perception mode of the human
fingertip, a robust and flexible ST sensor with a low array density of 2.7 cells cm�2

is reported. This innovative sensor has a soft and cambered configuration that
allows it to rapidly and accurately recognize the 3D surface features of objects,
including grooves as small as 500 μm. Benefiting from the strong correlation
between collected electronic responding and local deformation of sensing cell,
the ST sensor can adaptively reconstruct surface patterns with the assistance of
deep learning, even on unstructured objects. The pattern recognition system
based on the robot is demonstrated by accurately classifying a set of mahjong
tiles with nearly 100% accuracy, surpassing human tactile perception capabilities
in the same task.
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textures, such as fabrics and gratings.[19–21] These sensors are
typically designed for high-frequency sensing, but they are
susceptible to interference from the unstructured patterns of
real-world objects due to their limited static-force-sensing
capabilities.

Slow-adapting (SA) mechanoreceptors play a crucial role in
object feature sensing during the human perceptual process,
especially for surface pattern perception and recognition.
Sub-millimeter and millimeter-scale patterns often determine
the significative representation of objects. By effectively sliding
the fingertips across a surface, the pattern characteristics corre-
sponding to the continuous contact stimuli can be extracted from
the neural information of SA mechanoreceptors.[22] Li et al.
developed a bioinspired R-skin with a lateral gating-sensing
mechanism that demonstrated the feasibility of a sensor
slide-sensing strategy.[23] However, it still lacks a self-adaptive
recognition process for unstructured patterns and it is difficult
to accurately reconstruct 3D geometrical features of objects.

In this study, we propose a robust and flexible sliding tactile
(ST) sensor consisting of only a few cells (2.7 cells cm�2). The
soft and resilient contact medium of the sensor allows it to
conform to the surface features of objects, enabling the haptic
sensing of sub-millimeter and millimeter-scale patterns. The
deformation-induced tactile signal can be used to reconstruct
high-definition tactile images in a self-adaptive sliding process
of just a few seconds (with a structural similarity index method
[SSIM] value of 0.39), mimicking the process of converting tem-
poral scan signals into spatial perception during human touch.
The key geometrical information (such as depth and width) of the
surface pattern can be quantitatively predicted by using a convo-
lutional neural network (CNN), even during unstructured sliding

on a curved surface. It allows the ST sensor to overcome the lim-
itations of objects or scenes. We believe that the development of
ST sensors brings forth substantial cost reduction in E-skin for
robots and smart prostheses while simultaneously introducing a
more natural and dynamic approach to perception. This simple
yet efficient method of object pattern recognition not only advan-
ces autonomous decision-making and recognition in robots, but
also fosters their continued evolution.

2. Results and Discussion

A representative ST sensor on a robotic fingertip comprises eight
soft-arched cells, as shown in Figure 1a. The porous piezoresis-
tive sensing layer is firmly attached to the interdigitated electro-
des of the polyimide (PI) substrate by room-temperature
vulcanization (RTV) adhesive. The overall thickness of the sensor
is only 2mm, which is significantly thinner than that of a typical
vision-based tactile sensor.[24] The preparation process for the ST
sensor is depicted in Figure S1, Supporting Information. Laser
ablation and cutting ensure the structural consistency of each
cell. The cross-section microstructure of the porous piezoresis-
tive layer was observed using scanning electron microscopy
(SEM), as shown in Figure S2, Supporting Information. The soft
and resilient texture of the ST sensor is mainly attributed to the
various porous architectures ranging from nanometers to
microns, allowing it to conform flexibly to objects’ surfaces.
The finite-element simulation of the sliding perception process
of the ST sensor reveals that the sensor’s compression and
rebound cause voltage changes that directly reflect the surface
patterns of objects (Figure 1b). Upon contact with a plane, the

Figure 1. a) Schematic diagram of the human-tactile-sensing mechanism and the sliding sensing process using a representative sliding tactile (ST)
sensor. The sensor consists of a curved piezoresistive sensing layer, a room-temperature vulcanization (RTV) adhesive, and a polyimide (PI) substrate
with interdigitated electrodes. b) The finite-element simulation and actual voltage signal changes of the ST cell i) when the sensor makes contact with a
plane surface; ii) when the sensor slides across a groove pattern; iii) when the sensor slides over a bumpy pattern.
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sensor compresses, leading to a decrease in resistance. This
change in resistance results in an increase of the voltage signal
acquired from a typical voltage divider circuit (Figure 1b(i) and
S3, Supporting Information). When encountering a groove, the
conductive piezoresistive elastomer undergoes a dynamic transi-
tion between its compressed and relaxed states, resulting in a
dramatic decrease and subsequent increase in the voltage
(Figure 1b(ii)). When sliding on a bump, the sensor undergoes
further compression, causing a rising voltage signal compared to
the initial compressive state (Figure 1b(iii)).

To achieve force and pattern perception precisely, Figure 2a
displays the typical resistance–pressure response curve of the
ST sensor during the compression test. The piezoresistive sens-
ing layer has a unique hierarchical deformation response with a
large sensing range, which has been investigated in our previous
work.[25,26] The fitted sensitivity is about 0.44 kPa�1 for the
applied sensing range of this study (0–160 kPa). Figure 2b and
Note S1, Supporting Information, depict the voltage versus pres-
sure fitting function of eight ST cells, which shows a nearly linear
relationship and consistency with respect to the loading pressure

(R2> 0.97). In dynamic testing, the ST sensor can steadily
respond to the external pressure during the loading and unload-
ing cycle with low hysteresis (Figure 2c and S4, Supporting
Information). The response and relaxation times under high
pressure (670 kPa) are about 38 and 74ms, respectively, indicat-
ing that the sensor can quickly return to its initial state once the
external pressure changes. In durability tests, the performance of
the ST sensor did not deteriorate even after 20 000 cycles at a
pressure of 350 kPa and maintained significant consistency
(Figure 2d). In summary, the ST sensor has been demonstrated
to be linearly responsive to pressure, resilient, and robust in
potential applications requiring contact and sliding perception.

The typical sliding perception process involves the
“contacting-scanning-separating” procedure, and its response
signal is shown in Figure 2e. When ST sensor makes contact
with the object surface, the voltage signal increases to a reference
value (Vref ) that is proportional to the magnitude of the contact
force. As the sensor slides over a groove pattern, the voltage sig-
nal drops abruptly (Vdrop), creating a signal trough with a time
interval of ΔT. The Vdrop and ΔT are determined by the depth

Figure 2. Electromechanical performance evaluation of the ST sensor. a) Resistive response of the ST sensor to loading pressure. b) The voltage signals
of the eight cells in relation to the loading pressure. c) The ten consecutive cycles of compression loading and unloading curves of the ST sensor at
670 kPa. d) Stability and durability tests of the ST sensor for over 20 000 load–unload cycles at a frequency of 3 Hz. e) Typical signal when the ST sensor is
sliding on the groove. f ) Shape effect of the ST sensor on the voltage drop rate and minimum identifiable width. g) The minimum detectable sliding
distance of the ST sensor. h) Voltage signal and reconstructed grayscale image of the ST sensor when sliding on a test board. i) The relationship between
the voltage drop rate of the ST sensor and the width and depth of the groove.
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and width of the groove, as well as the contact force. Meanwhile,
we evaluated the shape effect on the sliding suitability of the ST
sensor. Figure 2f demonstrates that the arched cell exhibits a
higher voltage drop rate (Vref/Vdrop) than the planar cell when
it slides on concave surfaces, indicating its enhanced sensitivity.
Remarkably, the arched cell has a detection limit of 500 μm,
demonstrating its ability to accurately sense tiny grooves during
sliding. Moreover, Figure 2g shows a minimal detectable sliding
distance of 30 μm for the ST sensor, indicating the sensor’s supe-
rior sensitivity and potential for applications in robotic gripping
and slide detection.

Accurately estimating geometrical parameters, such as the
width and depth of a pattern, is critical for object perception
and recognition. In sliding experiments, a 3D displacement plat-
form was used to exert a sliding motion at a speed of 10mm s�1,
comparable to the exploring speed of the human finger
(Figure S5, Supporting Information). A set of grooves with dif-
ferent widths ranging from 0 to 4.0 mm are employed to calibrate
dynamic resolution, as shown in Figure 2h. The plot analysis
revealed that the groove width can be estimated by the time inter-
val (ΔT ) when the width exceeds 1mm. However, the estimation
accuracy is constrained by the compression-rebound response
time of the porous piezoresistive elastomer. In contrast, the
Vdrop values vary, indicating the varying degrees of rebound of

the compressed ST sensor as it slides over the groove.
Overall, the ST sensor achieves a width resolution of up to
500 μm, enabling it to extract most details of an object’s surface
characteristics at a scale similar to human tactile perception.[27]

Figure 2i shows the relationship between the voltage drop rate
and the width and depth of the grooves with a maintained pres-
sure of 160 kPa. The results suggest that the voltage drop rate is
proportional to the groove width when groove depth is constant
because a wider groove offers more bounce space for the ST sen-
sor. Similarly, when the groove width is held constant, the voltage
drop rate is positively correlated with the groove depth. However,
when the groove depth exceeds 0.6mm, there is little change in
the voltage drop rate because the groove depth has reached the
maximum rebound height of the ST sensor (Figure S6,
Supporting Information).

In a real scenario, the signal factors (Vref, Vdrop, andΔT ) of the
deformation-induced ST sensor are not only responsive to the
width and depth of the pattern, but also determined by the initial
contact pressure. To reconstruct the essence of the surface pat-
tern, the output voltage signals during sliding can be represented
as spatiotemporal grayscale images by mapping. As shown in
Figure 3a,b, the tactile grayscale images show the results for dif-
ferent cases. When the groove depth and contact pressure are
kept constant, an increase in the groove width leads to wider

Figure 3. The predicting process and results of the width and depth of the groove as well as the applied pressure. a) Voltage signal plots of the ST sensor
sliding on the grooves with different widths and depths. b) The restructured tactile images at a groove depth of 0.6 mm and applied pressure of 121.1 kPa,
respectively. c) The convolutional neural network (CNN) regression model built in this study. d) The loss functions of three prediction results.
e) The prediction results of the width and depth of the groove as well as the magnitude of the contact pressure.
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and darker dark stripes in the tactile image. Similarly, maintain-
ing a constant groove width and contact pressure while increas-
ing the groove depth results in darker streaks in the image.
Furthermore, if both the groove width and depth remain fixed,
an increase in contact pressure produces a brighter image. A
regression model based on a nine-layer CNN was developed
to predict three different classes from the tactile images
(with separate training for the different classes): the width and
depth of the groove, and the pressure applied to the sensor,
as seen in Figure 3c. The training dataset comprised the results
of 75 crossover experiments, where the ST sensor was slid on
each measured surface 20 times, producing a total of 1500 tactile
images. Among them, 1200 data were randomly selected as the
training set, 200 data as the validation set, and the remaining 100
data as the test set. Figure 3d shows the loss curves of the results
of numerous learning epochs. After 20 epochs of learning, the
loss curve flattens out. The outcomes of the CNN model for
extracting information from the tactile images in the validation
set are shown in Figure 3e, indicating that the root-mean-square
error between the predicted and actual values is considerably less
than 0.15, suggesting that the model is stable in perceiving the
features of the input tactile images. To demonstrate this, an ST

cell was used to perform a column-by-column single-point scan
of the university logo with a radius of 20mm. The obtained data
were then stitched together to obtain a high-density tactile image
that recovered the pattern contained on the surface of the object
under test with rich texture details, as shown in Figure S7,
Supporting Information. The experimental results suggest that
the tactile images produced by the proposed sliding ST sensor
have the ability for quantitative recognition and reconstruction
of the surface pattern features.

Concave patterns on carvings are usually more intricate than
periodic textures and often convey meaningful information. In
this study, we utilized a representative ST sensor with eight cells
to reconstruct the surface pattern of Mahjong tiles, as depicted in
Figure 4a. To capture and extract feature information, we
propose a dynamic window method. This approach employs a
sliding window that sweeps through the data of each sensor
channel, as shown in Figure S8, Supporting Information, to
capture segments that contain information. The window has a
discriminating condition at the beginning and end, respectively,
and the data points between them are picked only when both
threshold conditions are satisfied. The threshold (θ) of each
channel is selected as follow

Figure 4. The image processing of pattern recognition by using the ST sensor. Take the “Red Dragon” tile as an example. a) The description of pattern
features of the Mahjong tiles. b) The voltage signals and grayscale images of the ST sensor in the image processing of i) sliding perception; ii) dynamic
calibration; iii) pixels enhancement and downsampling. c) i) The original 2D grayscale image of the Mahjong tiles and the reconstructed tactile images by
using ii) 8� 10 sensor array and iii) ST sensor. d) The comparison of the array density and the spatial resolution between the ST sensor and previously
reported sensors.
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θ ¼ min Si þ ðmax Si þminSiÞ � δ (1)

where Si is the signal value of the cell i, and δ is the trigger factor
(0–0.2). Figure 4b illustrates the dynamic calibration processing
and the results of each step. First, the voltage signal of each cell
(Figure 4b(i)) is converted to a more homogenized pressure vari-
ation via the pressure–voltage fitting function (Figure 4b(ii)). To
reduce the pixel value difference between the row (3000 pixels)
and column (8 pixels) directions of the tactile image, a
nearest-neighbors method is introduced for 2D interpolation
to enhance the column direction from 8 to 400 pixels
(Figure 4b(iii)). The resulting tactile images are finally
downsampled to 106� 217 pixel points, smoothed without
compromising data quality, thus reduced in storage requirements.
To showcase the efficiency of the ST sensor (2.7 cells cm�2),
a high-density 8� 10 sensor array (6.7 cells cm�2) with the
same sensing material was used for comparison. In Figure 4c,
the tactile images mapped by the 8� 10 array and the ST
sensor array were compared with the camera image of the
mahjong tile. The perceptual hash (PHash) method and
SSIM were used to evaluate the original structural similarity of
the tactile image and build the benchmark for reconstructed
tactile image quality (Note S2, Supporting Information).[28–30]

The ST sensor performs with a better similarity than the
8� 10 array under both evaluation methods (Table S1,
Supporting Information). Conventional pixel-based sensor arrays
require high array density to achieve high resolution of mapped
haptic images, leading to a large number of sensing cells. While
some previous studies have reported achieving higher-texture
resolution by using a single-micro-sensing unit, these
methods are time-consuming when reconstructing tactile images.

In contrast, the ST sensor can realize remarkable spatial resolution
with a lower array density than what has been reported in previous
literature (Figure 4d).[31–40]

To demonstrate the ST sensor’s perception and recognition
capabilities for complex patterns, we conducted a classification
task using mahjong tiles. We mounted the ST sensor onto the
UR5 robot to simulate the sliding process of a human finger,
as shown in Figure 5a. The blank experiment showed a high
consistency between the sensing signals for the eight cells
(Figure S9, Supporting Information). The robotic finger per-
formed 350 scans on each mahjong tile with random speeds,
pressures, and starting positions. These data were organized into
a dataset of 11 900 grayscale images, with each image labeled as
one of 34 mahjong tiles (Figure 5b). The support vector machine
(SVM) classifier with the radial basis function kernel was used to
classify the 34 types of Mahjong tiles (Figure 5c). The training set
consisted of 60% of tactile images, while the remaining 40%
were used for validation. The overall classification accuracy
was 99.0%, with the lowest accuracy of 98% for Mahjong tiles
7B and C (Figure S10, Supporting Information). These results
demonstrate that the reconstructed tactile images possess a high
level of information richness and can be precisely classified by
the SVM model. To compare the performance of human hands
and the robot, we conducted a small competition. The confusion
matrix results in Figure 5d,e indicate that the ST sensor has a
superior ability to perceive and recognize Mahjong tiles,
achieving an accuracy of 97.0% in an average of 6.08 s, which
is significantly better than human testers (with an average
accuracy of 44.7% in 22.4 s).

The performance of a haptic glove was further tested in
challenging scenarios to confirm the self-adaptive ability of the

Figure 5. The recognition and classification of Mahjong tiles. a) The ST sensor is installed at the end of the robot arm to perform a sliding perception.
b) The restructured tactile images of 34 Mahjong tiles. c) Schematic diagram of the classification of tactile images. Results of the confusion matrix based
on d) the human classification and e) the robot classification.
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ST sensor for complex objects. As a proof of concept, as shown in
Figure 6a, an ST sensor with four channels was mounted on a
commercial glove. In contrast to the stability of the robot, the
human fingertip is subject to constant variation when sliding,
with both the loading force and sliding speed fluctuating. The
planar patterns consisted of monograms, cracks, and stripes
(containing grooves and bumps), as shown in Figure 6b. By cap-
turing the signal of each channel, four columns of characteristic
signals were extracted and transformed into a tactile image with
depth information (Figure 6c). The reconstructed tactile images
clearly display the contour and gradient features of different
patterns, including characters, irregular shapes, and concave–
convex stripes. We even tested the feasibility of ST sensor on
the curved patterns (Figure 6d). The tactile images of the surface
patterns generated by manual sliding can clearly reflect the tex-
ture and edge features on the curved surface, and restructure
them accurately compared the actual objects (Figure 6e).

3. Conclusion

In summary, we have developed a flexible tactile sensor inspired
by human-like exploratory movements that can reconstruct and
recognize sub-millimeter and millimeter-sized patterns. The
contact medium of the sensor is highly conformable and
undergoes deformation during the sliding perception process,
resulting in piezoresistive sensing signals. These changes in sig-
nal intensity, time interval, and voltage drop rate have been
shown to be strongly correlated with the 3D geometrical features
of unstructured surface patterns. Compared to conventional tac-
tile sensor arrays, our ST sensor, with a low array density, can
provide abundant information for reconstructing tactile images
with high resolution and low processing time. To demonstrate
the superiority of our sensor and image processing approach,
we conducted an experiment to recognize and classify 34
Mahjong tiles using deep learning. The results showed almost
100% accuracy, highlighting the effectiveness of our approach.

Furthermore, the adaptive capability of the ST sensor enables
it to produce effective tactile images even during unstable
manual sliding. These results indicate that the ST sensor pro-
posed in this study has significant implications for autonomous
tactile identification in smart robots and prostheses.

4. Experimental Section

Finite-Element Analysis: Finite-element analysis (FEA) was performed
using the commercial software Abaqus/Standard 2019. A hyper-
elastic–Yeoh model is used to represent the nonlinear deformation
performance of the ST sensor. The material constants C10, C20, and
C30 in the Yeoh model are 0.5738, 0.0747 and 0.0113, respectively,
and the incompressibility parameters D1, D2, and D3 are 0.01, 0.1,
and 0.5, respectively.

Preparation of ST Sensor: The porous piezoresistive slurry for the ST
sensor was prepared by employing NaCl particles as a sacrificial template.
All chemicals were used as received without purification. First, thermoplas-
tic polyurethanes (TPU, BASF Co. Ltd.) were dissolved in N,
N-Dimethylformamide (Aladdin), and mixed with carbon black
(CB, Timcal Inc.) and NaCl (AR, Aladdin) at a mass ratio of 4: 1: 20
(TPU: CB: NaCl) using a planetary vacuum mixer (HM800, HASAI).
The slurry was optimized in our previous works to obtain appropriate elec-
trical and mechanical properties.[25,41] The mixture was then spread into a
film using blade coating and dried in an oven at 80 °C for 4 h. After curing,
the piezoresistive film was immersed in water for 24 h to remove the NaCl
particles, leaving a porous structure. The dried porous material was then
cut into the desired shape using a fiber laser engraver (Shanghai Diaotu
Industrial). For a representative ST sensor, eight individual cells were fixed
onto the electrodes of a flexible printed circuit board. RTV adhesive (K–
704, Guangdong Hengda New Technology Co., Ltd.) was applied around
the electrodes, and the cells were securely pressed into place within the
adhesive.

Characterization: The surface micro-morphology of the piezoresistive
sensing layer was observed by the field emission SEM (FESEM,
TESCAN MAIA3). Mechanical tests were implemented using a universal
testing machine (Instron E1000), while resistances were measured by a
multiplex digital multimeter (Keithley DMM6500) equipped with a plug-
in scanner card. A programmable 3D-printing platform with three degrees
of freedom was used to realize the sliding perception process. The sensing

Figure 6. The reconstruction of actual objects by the haptic glove. a) A haptic glove equipped with four ST cells for executing a manual sliding process.
b) Planar surface patterns, including monograms, cracks, and stripes. c) The reconstructed tactile images on the planar surface. d) Curved surface
patterns, including waves and angular edges on the glass bottles. e) The reconstructed tactile images on the curved surface.
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signals were acquired with a data acquisition device (National Instruments
USB–6218) at a sampling rate of 1000Hz.

Convolutional Neural Network Model: The 2D CNN model is composed
of three convolutional layers that use forward propagation paths, three
pooling layers, and a fully connected layer that functions as a regression.
Each convolutional layer is followed by a 2D batch normalization function
and a rectified linear unit activation function. The output of the final con-
volutional layer is flattened into a 1D vector and then passed into a
sequence of fully connected layers. To train the entire model, an adaptive
moment estimation (Adam) optimizer and mean-squared error loss are
employed, with a learning rate of 0.0001 across 100 epochs.

Robot Demonstration: A sliding perception system was performed using
a collaborative robot (UR5, Universal Robots) and a 3D-printed finger.
Tactile signals were measured and calculated with the use of an national
instruments (NI) acquisition card and a personal computer (PC). The posi-
tion and direction of the robot are controlled by the robot-operating
system.

Description of the Human Haptic Test: Forty individuals, both male and
female, between the ages of 19 and 50, took part in a human haptic test to
evaluate their ability to distinguish between patterns on the surface of
Mahjong tiles based on their sense of touch. Prior to the experiment,
all participants provided informed consent. During the test, the partici-
pants were presented with eight Mahjong tile samples randomly, using
a blind testing procedure. They were instructed to identify each tile’s pat-
tern by running their fingers over its surface and recognizing it by touch.
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the author.
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